
INFORMS TSL 
First Triennial Conference  July 26-29, 2017 Chicago, Illinois, USA 

30 | P a g e  
 

Traffic & Mobility 
TA2: Traffic Equilibrium 
Thursday 8:30 – 10:30 AM            
Session Chair: Carlo Prato 

 

8:30  Analyzing Departure Time Choice in a Bottleneck with Stochastic Service Time 
 Gege Jiang*, Hong Lo 
 Hong Kong University of Science and Technology 
  
9:00 An Algorithm for Transit Assignment Problem with Flow-Dependent Dwell Times 
 Yufeng Zhang*, Alireza Khani 
 University of Minnesota 
  
9:30 Statistical Inference of Probabilistic Origin-destination Demand Using Day-To-Day Traffic Data 
 Wei Ma*, Zhen Qian 
 Carnegie Mellon University 
  
10:00 Threshold-Based Stochastic User Equilibrium Models 
 1David Watling, 2Thomas Rasmussen, 2Otto Nielsen, 3Carlo Prato* 
 1University of Leeds, 2Technical University of Denmark, 3The University of Queensland 
  

 

  



Analyzing Departure time Choice in a Bottleneck with Stochastic Service Time 
 

Gege JIANG , Hong K. LO*   

E-mail: cehklo@ust.hk 

Department of Civil and Environmental Engineering, 

The Hong Kong University of Science and Technology, Hong Kong, China 

1. Introduction 

The bottleneck model has interested researchers for many years since its original development by 

Vickery (1969). This model describes commuters’ trip scheduling profile during the morning peak, and 

models congestion as queuing behind a single bottleneck, providing simplicity yet the ability to reasonably 

capture the performance of a bottleneck.  

Recently attention has turned to analyzing the bottleneck model under stochastic conditions. Li (2008) 

calculated the departure time distribution under stochastic conditions and concluded that the presence of 

random delay can significantly shift the departure time. Fosgerau (2010a) studied the equivalence between 

the scheduling model and mean-variance model under travel time uncertainty. Xiao et.al (2015) investigated 

the properties of the stochastic bottleneck model and proposed two schemes for congestion toll. Siu and Lo 

(2009) linked the departure sequence to the Within Budget Travel-time Reliability (WBTR) requirement. 

Compared with deterministic bottleneck models (Arnott et. al, 1990), indeed our understanding of bottleneck 

models under a stochastic context can be much improved. 

Previous stochastic bottleneck studies usually calculated the departure profile to equalize the mean 

cost of each traveler. Few studies have established the connection between travel cost variability and 

departure time choice. Moreover, they cannot distinguish between people who choose to depart in the more 

congested period and those who depart in the period with less congestion. In other words, the motivation or 

incentive for a traveler to choose a specific departure time has not been considered extensively. To fill this 

gap, this study makes three contributions. 

First of all, this study introduces travel cost variation as an additional cost. The equilibrium condition 

is not only based on mean travel cost but also cost variation. Travelers trade between their cost mean and 

variance. When user equilibrium is achieved, we can infer their attitudes towards cost variability based on 

their chosen departure times. Secondly, the randomness of service time and travelers’ sensitivity towards 

variability are investigated. We can conclude that the departure profile of travelers is influenced by both 

factors. Thirdly, we apply a one-step coarse toll during a specific time interval to investigate the effects of 

tolling on queuing time as well as cost variation. Such an understanding will shed light on developing traffic 

management strategies for stochastic bottlenecks. 

2. Problem Formulation 

Following Fosgerau (2010b), we assume the bottleneck has a capacity of 1/ s  per time unit, and we 

normalize the total demand to be 1. Therefore, the time to serve all the travelers is s , where s is a random 

variable with probability density function (PDF) ( )s  and cumulative probability function (CDF) ( )s . 

Using this assumption, we can accommodate the variability of capacity and demand simultaneously, because

s increases with demand and decreases with the capacity. We further assume that the service time falls within 

a certain range, expressed as: [ , ]s s s  . Every day s takes on a specific realization, so that the ratio of 



capacity to demand remains the same during the morning peak hour.  

Suppose travelers enter the bottleneck with the time interval 0[ , ]et t  every day at equilibrium. The 

departure rate is ( )r t  and the cumulative number of travelers having entered the bottleneck at time t  is  

 
0

' '( ) ( )
t

t
R t r t dt    (1) 

Depending on the realized capacity, travelers may have to experience a queue of  

 0( ) max[ ( ) ( ) / ,0]Q t R t t t s     (2) 

The condition for the existence of a standing queue at time t  on a particular day is  

 0( ) ( ) / ( )s t t t R t    (3) 

( )s t  is the service time if the queue is exactly zero at time t  . If ( )s s t , ( )Q t  will be greater than zero 

and vice versa. Thus the queuing time is  
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Denote the arrival time of the traveler who enters the bottleneck at time t  to be 
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t , 
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Assume the preferred arrival time *t  for all the travelers is 0 for simplicity, and the cost under the realized 

service time of s  is  

 ( ) ( ) ( ) ( )sC t q t SDE t SDL t       (6) 

where ( )SDE t  and ( )SDL t , respectively, are the schedule delay early and late at time t . 
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
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The mean travel cost of the traveler who enters the bottleneck at time t  is:  

 [ ( )] ( ) ( ) [ ( )] [ ( )] [ ( )]
s

ss
E C t C t s ds E q t E SDE t E SDL t         (8) 

Because of the day-to-day stochastic capacity and demand of the bottleneck, commuters experience different 

travel cost on each day. The variance of travel cost can be defined as: 

  22 2 2[ ( )] [ ( )] ( ) ( ) [ ( )] [ ( )]
s

ss
C t E C t C t s ds E C t E C t       (9) 

The traditional bottleneck model only considers mean travel cost but not cost variation. It cannot answer the 

question that who will depart early or late. Besides, it cannot capture peoples’ risk attitude. In our study, we 

propose that people consider the variance of travel cost in departure time choice, which can be formulated as 



following: 

 ( ) [ ( )] [ ( )]G t E C t C t    (10) 

( )G t  is the generalized cost, a linear combination of mean travel cost and standard deviation of travel cost. 

  is the coefficient, interpreted as the sensitivity of cost variation in this study. When equilibrium is 

achieved, all the travelers share the same generalized cost so they have no incentive to change departure time. 

Thus, travelers depart during different time intervals may have different mean costs. According to their 

arrival times, travelers can be classified into three categories: 

(i) Travelers who always arrive early and experience no schedule delay late. 

(ii) Travelers who may arrive early or late, Depending on the realized capacity on the day. 

(iii) Travelers who always arrive late and experience no schedule delay early. 

For case (i), travelers depart within 0 1[ , ]t t , their travel costs come from queuing delay and schedule early 

cost. Their mean travel cost is: 

    
( )

0 0( ) ( )
[ ( )] ( ) ( ) ( ) ( ) ( )

s s t s

s t s s t
E C t sR t t t s ds t s ds sR t t s ds                (11) 

The boundary condition is 0 ( )t sR t  . 

For case (ii), travelers depart within 1 2[ , ]t t , there is a critical service time 0( ) / ( )s t t R t  . If ( )s s t  , 

the travelers would be late. So the mean travel cost is  
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The boundary condition is 0t  if ( )s s t  and 0 ( )t sR t  otherwise. 

For case (iii), travelers depart within 2[ , ]et t . Their mean travel cost is 

    
( )

0 0( ) ( )
[ ( )] ( ) ( ) ( ) ( ) ( )

s s t s

s t s s t
E C t sR t t t s ds t s ds sR t t s ds                 (13) 

3. Numerical Studies 

For simplicity, we assume s follows a uniform distribution, [1 ,1 ]s     .We have: 
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For the first traveler who departs at 0t , 0( ) 0q t  .Thus  

 0 0( )EC t t    (15) 

 2
0[ ( )] 0C t    (16) 



For the last traveler who departs at et , ( ) 1, ( ) 1e es t R t  and the generalized cost can be expressed as a 

function of et . When equilibrium is achieved, each traveler has the same generalized cost: 

 0 0 0( ) ( ) [ ( )] [ ( )] [ ( )] [ ( )]e e eG t G t E C t C t E C t C t        (17) 

So we can solve the queuing profile for the whole interval with the same equilibrium generalized cost. Due to 

the complex form of the generalized cost, no analytical expression of ( )R t  can be derived. However, we 

can solve ( )R t  by numerical methods. According to previous research by Xiao et.al (2015), the length of 

departure interval, 0et t , is only slightly influenced by capacity variation. For calculation simplicity, we 

assume 0 =1et t  which is calculated based on the mean capacity. This assumption might cause subtle 

inconsistency but the error range is within 0.1% of the actual length of departure interval based on the 

numerical experiments. 

 

Figure 1 shows the departure profile 

for 0.1, 0.5   . The two 

dashed lines correspond to the 

maximum and minimum capacity, 

respectively. 0 , et t  are the start and 

end times of the departure interval. 

1 2,t t are the watershed points to 

separate the three cases. Travelers 

depart after 3t  may or may not 

experience queue depending on the 

realization of capacity. If capacity is really large, 3t can be smaller than 2t . 

Figure 2 shows the cost components for travelers entering in different times. The generalized 

equilibrium cost is 0.5185, the same for each traveler, even though the component costs (variation cost, 

schedule early/late cost, travel time cost) vary. For travelers departing early, their costs mainly come from 

schedule early cost. For later departures, the percentage of variation cost gradually increases. The largest 

variation cost does not synchronize with the maximum queue because we consider both variations of travel 

time and schedule delay cost. It is easy to understand that travelers departing later are more likely to be 

influenced. Unlike deterministic case, the mean queuing cost for the last traveler is not zero. That is consistent 

with the result in Figure 1. When the capacity is low, even the last traveler must endure a queue. 

Figure 3 is the departure profile under different or service time variability. The case of 0   

corresponds to the deterministic case. We can see that as increases, travelers tend to depart earlier. Since the 

Figure1. The departure profile 



capacity/service time is random, we cannot plot out the queue length during the interval, but it can be inferred 

from Figure 3 that the maximum queue length decreases with . We can interpret this result as following. As 

variation increases, people are more likely to endure schedule late penalty. According to our assumption, 

  , so they would like to depart earlier to accommodate the potential large cost.  

 

4. Conclusion 

This study developed a bottleneck model 

under stochastic cost variation, in which 

people’s attitude towards cost uncertainty 

is incorporated in the decision process. 

From the simple illustrative model, we can 

see that the stochastic bottleneck model 

exhibits different characteristics as 

compared with the classic deterministic 

models. When equilibrium is achieved, 

each person has the same generalized cost, 

but different mean cost and cost variation. 

The tradeoff between expected cost and 

uncertain cost is manifested in each 

person’s risk attitude. An interesting point 

is that this model can produce a mapping 

between the departure profile and risk 

attitude of travelers, which does not exist 

in the original bottleneck model and other 

stochastic bottleneck models. Although 

this mapping is not a one-to-one mapping, 

it can help reveal a person’s risk attitudes according to his departure time. This work is only partly done by now. 

The sensitivity of generalized cost toward cost variability and the effect of one-step toll will be demonstrated in 

the full paper.  

5. Reference 

Arnott, R., De Palma, A., & Lindsey, R. (1990). Economics of a bottleneck. Journal of urban economics, 27(1), 111-130. 
Fosgerau, M., & Karlström, A. (2010a). The value of reliability. Transportation Research Part B: Methodological, 44(1), 38-49. 
Fosgerau, M. (2010b). On the relation between the mean and variance of delay in dynamic queues with random capacity and demand. Journal 
of Economic Dynamics and Control, 34(4), 598-603. 
Li, H., Bovy, P. H., & Bliemer, M. C. (2008). Departure time distribution in the stochastic bottleneck model. International Journal of ITS 
Research, 6(2). 
Siu, B. W., & Lo, H. K. (2009). Equilibrium trip scheduling in congested traffic under uncertainty. In Transportation and Traffic Theory 
2009: Golden Jubilee (pp. 147-167). Springer US. 
Small, K. A. (1982). The scheduling of consumer activities: work trips. The American Economic Review, 467-479. 
Vickrey, W. S. (1969). Congestion theory and transport investment. The American Economic Review, 251-260.  
Xiao, L. L., Huang, H. J., & Liu, R. (2015). Congestion behavior and tolls in a bottleneck model with stochastic capacity. Transportation 
Science, 49(1), 46-65. 

Figure2. Cost Components 

      Figure3. The departure profile under different  
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Abstract: In a typical transit network, bus dwell times are not constant but are affected by flows of 
boarding and alighting passengers, whose cumulative property has impacts on how passengers choose 
their routes towards user equilibrium (UE). This leads to an asymmetric transit assignment with link 
interactions. In this paper, the problem is formulated as variational inequalities (VI) and a solution 
algorithm is developed based on a linear constrained generalized Benders decomposition method. Some 
decent properties unique to transit network are explored, which simplifies the assignment problem by 
converting the original VI problem to a linear optimization problem. A hypothetical transit network 
example is included to test the validity and efficiency of the proposed algorithm, which also gives some 
insights to the proposed method. Computational results show that the proposed algorithm can 
successfully find UE solutions with high accuracy and a good convergence rate. Simplicity of the 
algorithm encourages practical applications to schedule-based transit assignment problems with flow-
dependent dwell times.  
 
Keywords: Asymmetric Link Interactions, Variational Inequalities, Transit Assignment, User 
Equilibrium, Variable Dwell Time 

INTRODUCTION  
The transit equilibrium assignment problem has unique properties compared with general traffic 
assignment problems. Some complicated and realistic properties such as link interactions make the 
problem sometimes more difficult to solve. Consider the situation where a bus arrives at a stop, 1) the 
dwell time is subject to the time consumed by alighting and boarding passengers, and 2) if taking bus 
capacity into consideration, some of the passengers may be forced to wait for the next bus due to the 
insufficient capacity on the bus. There exist link interactions in this case, and the extents to which they 
influence one another is not the same, which is known as asymmetric link interactions. Due to these 
properties, passengers using one route will exert additional travel cost on this route and other passengers 
who have multiple route choices may avoid using the excessively used routes to reduce their travel time. 
Take the transit network shown in figure 1 for example, if there are more passengers boarding at stop 
B0 and alighting at stop C0, then the dwell times on link 10 and 13 increase and at the same time increases 
the total travel time of the passengers from A0 to D0 taking the route consisting of links 7, 2, 10, 3, 13, 
4, and 14. Thus, passengers will alternatively use the route comprised of links 5, 1, and 6 to travel from 
A0 to D0. In short, the significant property in this transit assignment problem is that dwell times are 
functions of flows on boarding and alighting links and this influences how passengers choose their 
routes. This results in an asymmetric transit assignment problem, which is the problem we aim to solve 
in this research.  

This research develops an algorithm based on Benders decomposition, which basically 
partitions the network into two separate but interlinked ones. We explored some decent properties of 
the transit network and further extended the Benders decomposition into asymmetric link interaction 
transit assignment problems, which converts the problem of solving a generally difficult VI into a linear 

mailto:zhan4879@umn.edu
mailto:akhani@umn.edu
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optimization problem. Besides, a numerical example is given in the paper to test the validity of the 
algorithm, explore the efficiency and provide some insights into the algorithm. The computational 
results show that the algorithm solves the problem effectively and efficiently. The work on this research 
extended the Benders decomposition to solving a flow dependent bus dwell time characterized transit 
assignment problem. The methodology is intuitive and easy to implement in practice to solve a more 
realistic version of the transit assignment problem.  

 
Problem Formulation 
 A transit network comprised of nodes and arcs is represented as 𝐺𝐺(𝑁𝑁,𝐴𝐴), where the set of 
nodes, N, consists of nodes representing both physical bus stops and artificial boarding/alighting nodes, 
and the elements in the arc set, A, represent alighting links, boarding links and dwell-time links. A 
detailed network representation is introduced as follows. 
 In this study, three types of links, including alighting links (e.g. link 11), boarding link (e.g. 
link 12), and dwell-time link (e.g. link 13), are involved in link interactions. Specifically, travel times 
on dwell-time links are functions of flows on alighting links and boarding links. In contrast, travel time 
on boarding links and alighting links are functions only of flows on themselves. One can check the 
asymmetric property that this network exhibits by checking the Jacobian matrix of link travel time 
functions. The other type of link is in-vehicle links (e.g. link 1, 3) whose travel time is assumed to be 
flow invariant. 
 

 
Figure 1. Representation of a transit network with link interactions 

 
Due to variable dwell times sourced from link interactions, passengers’ route choice behaviors 

are subject to the flows (or to be exact, the travel times) on each link. Under the assumptions of UE, all 
the used routes connecting the same OD pair have the same travel times, which should be less than the 
travel time on unused routes connecting the same OD pair. We aim to find the flow pattern on the links 
that satisfies UE. VI is adopted to formulate this transit assignment problem.   

The problem is to find 𝒙𝒙∗ ∈ 𝑆𝑆, such that 

 * *( )( ) 0c − ≥xx x  (1) 

s.t. 
1

,
r

k
ij ij

k
x x ij L

=

= ∀ ∈∑  (2) 

 { }, 1, 2,...,k kA d k r= ∀ ∈x  (3) 

 { }0, 1,2,...,k k r≥ ∀ ∈x  (4) 

where 𝐶𝐶(𝒙𝒙) is the vector function of link costs,  𝒙𝒙 is the vector of aggregate link flows, 𝐿𝐿 is the set of 
all the links in the network, 𝐴𝐴 is the arc-node incidence matrix, 𝑘𝑘 represents one OD pair, 𝑑𝑑𝑘𝑘 is the 
demand of the k-th OD pair, and 𝑟𝑟 is the number of OD pairs in the network.  
 
Literature Review 
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Variational inequalities were first studied in general traffic assignment problem. Dafermos [1] 
developed an algorithm for solving VI in the situation where it requires a monotonicity condition and 
the travel time function must have a special form with a symmetric and positive definite matrix. 
Simplicial decomposition, another popular technique used to solve VI problems, have been extensively 
applied in traffic assignment study area. It is developed based on the principle of Dantzig-Wolfe 
decomposition [2]. An “SDVI” algorithm [3] is proposed for solving asymmetric traffic assignment, 
which solves the master problem of simplicial decomposition with the projection technique. Nguyen et 
al. [4] applied restricted simplicial decomposition for solving the transit assignment problem with 
capacity constraints. Wu et al. [5] solved the VI with the linearized Jacobi method. They included 
nonlinear waiting cost and in-vehicle cost in their model, which generalized the model by Spiess et 
al.[6]. There are still handful studies on applying simplicial decomposition to traffic assignment 
problem, including the research by Larsson and Patriksson on nonlinear column generation [7], and 
their work on symmetric traffic assignment problem [8]. Most of these works focused on solving the 
master problem of the simplicial decomposition, which is the key and difficulty in applications of the 
method. Other methods for solving asymmetric traffic assignment problem take the idea of simplifying 
the travel cost functions by either making it symmetric or leaving out some unimportant terms, e.g. [9].  

METHODOLOGY 
The approach of Benders decomposition in [4] transforms the equation (1) to the form shown as follows:   
 * * * *

1 2( ) ( ) 0, ,( ) ( ) ( )C C S− + − ≥ ∀ ∈x y x yx x y y  (5) 

where S is the set of all the feasible flows and is defined by the constraints (2) -(4).  
The above formulation divides the VI into two parts. One corresponds to links with symmetric 

Jacobian matrix, whose link flows are represented by vector 𝒙𝒙, and the other corresponds to the link 
flows of asymmetric link interactions represented by vector 𝒚𝒚 . Correspondingly, 𝐶𝐶1(∙)  and 𝐶𝐶2(∙) 
represent the vector functions of travel cost of symmetric part and asymmetric part, respectively.  

A typical Benders decomposition method solves a master problem and a sub-problem, which 
finds the shortest travel time in symmetric part. In a transit network, vector function 𝐶𝐶1(∙) are costs of 
in-vehicle links, whose travel time is constant in a schedule-based transit network. Thus the shortest 
paths in the symmetric part are automatically found. Then, the problem is reduced to solving the 
problem described in the equation (6). 

 * * *
2( ) ( ) 0, ,( ) ( )C S− + − ≥ ∀ ∈x y x yx y yλ   (6) 

where vector 𝝀𝝀 is the travel times of in-vehicle links, and vector 𝒙𝒙 and y are the link flows of in-vehicle 
links and the other links involved in link interactions. The solution algorithm for the asymmetric link 
interaction transit assignment problem is proposed as following:         

Step 1 (Initialization):  Assign the demands to the routes with the shortest free flow travel times 
and get an initial flow vector (𝒙𝒙0,𝒚𝒚0).  Set iteration label i = 0. 

Step 2 (Solving the linear program): 
0Max       T  

(7) s.t.      0 2 ( ), 0,1, 2,...( ) ( )i i i i IT C =≤ − + −x x y y yλ  
,( ) S∀ ∈x y  

Step 3 (Convergence check):   Find the shortest paths for each OD pair and calculate corresponding 

shortest travel times 𝜅𝜅𝑘𝑘. If 
2

1

1

( )
r

k k

k
r

k k

k

C d

d

κ
ε

κ

=

=

+ −
≤

∑

∑

x y yλ
 , stop and (x, y) is the optimal solution; otherwise, 

set i=i+1 and go to step 1.  
 The VI problem is hereto successfully transformed into a linear optimization program.  
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COMPUTATIONAL STUDIES 
A numerical example is given in this section and the algorithm is implemented in Python. The topology 
of the transit network is shown in Figure 2. In this example, it is assumed that passengers on average 
take 4 seconds to board the bus and take 2 seconds to alight. Defining (𝑎𝑎, 𝑏𝑏)𝑘𝑘 as the alighting flow and 
boarding flow at the bus stop k, the link cost function for alighting link is 𝑐𝑐𝑎𝑎(𝑎𝑎) = 2 × 𝑎𝑎 , the link cost 
function for boarding link is  𝑐𝑐𝑏𝑏(𝑎𝑎, 𝑏𝑏) = 4 × 𝑏𝑏  , and the link cost function for dwell-time link is 
𝑐𝑐𝑑𝑑(𝑎𝑎, 𝑏𝑏) = 2 × 𝑎𝑎 + 4 × 𝑏𝑏. Dwell times are functions of boarding flow and alighting flow. Existence of 
link interactions impact how passengers choose their routes to minimize their total travel times. 

                    
                                                    a)  Example network                                                                    b)  OD pair information  

Figure 2. Example transit network 
 

  In cases 1 and 2, the travel times of in-vehicle links were fixed, and experiments are conducted 
by changing the demands between the 8 OD pairs. In contrast, demands were fixed in cases 3 and 4, but 
in-vehicle times were changed. Detailed information is displayed in Table 1. Terminating error 
threshold 𝜀𝜀 in step 3 took the value of 0.1%. 
 

Table 1. Computational results  

Case Travel time (sec)  Computational statistics 

   
A-C 

upper 
path 

A-C 
lower 
path 

A-G 
upper 
path 

A-G 
lower 
path 

 
Relative 

gap* 
# of 

iteration 

CPU 
time 
(sec) 

Fixed in-vehicle travel time [90,120,60,90,60,60,90](sec), variable OD demands [A-C, A-G, A-F, B-C, E-C, E-G, E-F, D-G] 

1: [20, 10, 10, 15, 
    5, 5, 5, 15] 

403.69 404.46 271.85 269.03  7.45 10-4 22 4.85 

2: [30, 15, 5, 10, 
    15, 10, 5, 10] 

439.86 439.00 291.14 295.62  9.82 10-4 68 125.27 

Fixed OD demand [20, 10, 10, 15, 5, 5, 5, 15], variable in-vehicle travel times [1, 2, 3, 4, 5, 6, 7] (sec) 

3: [80, 100, 50, 90, 
    30, 75, 40] 

354.73 354.52 265.74 262.77  9.61 10-4 31 13.11 

4: [72, 80, 36, 57, 
    102, 25, 80] 

362.00 368.65 239.76 247.14  7.81 10-4 22 4.78 

 
Under the user equilibrium assumption, used paths connecting the same OD pair should have 

the same travel time which should also be less than the travel time on unused paths. In our experiments, 
the paths connecting the same OD are all used and they exhibited rather close travel times. The “relative 
gap” defined by the ratio of the total system travel time less the shortest path travel time and the shortest 
path travel time, were also reported to measure the performance of the algorithm from another 
perspective. All of the tests reach the gap to 10-4, which is good enough for practical applications. 

O D 
A0 C0 
A0 G0 
A0 F0 
E0 C0 
E0 G0 
E0 F0 
B0 C0 
D0 G0 
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Another experiment aiming to evaluate the computational times were conducted based on Case 
1. Relative gap threshold 𝜀𝜀 took the value from 10-1  to 10-6. Figure 3.a shows that the number of 
iterations and computational times increase sharply with the increase of accuracy defined by the relative 
gap. The solution algorithm belongs to the category of cutting plane algorithm [4], which adds a new 
constraint to the linear program in every iteration. So the computational time increases rapidly with the 
increase of constraints. Fig 3.b shows the interdependent relationship between number of iterations and 
CPU times. Usually, a relative gap below 1% can be considered good for practical applications, and 
according to Figure 3.a, the computational time is acceptable between threshold 10-1 and 10-3. So, we 
can expect a good convergence speed if choosing the above recommended threshold values. 

        
a) Results of case 1 with different relative gap threshold                 b) number of iterations and CPU time 

Figure 3. Computational time and number of iterations  

CONCLUSION 
Computational results indicate that the solutions obtained converge to user equilibrium. Computational 
time is related with the number of iterations and due to the property of increasing constraints of the 
algorithm, time increases sharply but can be controlled within a reasonable range if some good 
terminating threshold is chosen without a great loss of solution accuracy.  

This research further developed Benders decomposition method to the application of solving 
an asymmetric transit assignment problem which is characterized by the fact that dwell times are 
functions of boarding and alighting flows. Explorations of some decent properties unique to the transit 
network allow for the proposal of an easier linear optimization solution algorithm for VI. The solution 
algorithm performs effectively and efficiently. The results obtained so far are encouraging and the 
methodology is well worth further development. 
 Future work will focus on including transfers and congestion and formulating the dual problem, 
which can convert the addition of constraints to addition of variables to the optimization problem aiming 
to further reduce the computational time.  
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The origin-destination (O-D) demand is a critical input to system modeling in transportation planning5

and management. For decades, O-D demand is deterministically modeled, which leads to deterministic6

models of link/path flow and travel cost. Recent studies on transportation network uncertainty and relia-7

bility call for modeling the stochasticity of O-D demand, namely its spatial correlation and variation. Till8

now, only a few studies have considered the stochastic features of O-D demand and started to estimate9

the mean and variance of O-D demand using day-to-day traffic data. However, none of these studies rec-10

ognize the fact that the variation of traffic data stems not only from O-D variation but also from travelers’11

independent route choices that vary from day to day. Consequently, those studies are making a biased12

estimation of O-D demand distribution. In view of this, this paper develops a novel framework for esti-13

mating the mean and variance/covariance of probabilistic O-D demand considering the variation induced14

by travelers’ day-to-day random route choices. Furthermore, the statistical explanation, examination and15

analysis towards the estimated probabilistic O-D demand are also provided.16

The classical traffic assignment models [e.g., 1, 2] deterministically map the origin-destination de-17

mand q ∈ RR×S
+ to link flow x ∈ RN

+ or path flow f ∈ RK
+ . The O-D demand q is assumed to represent18

the mean number of O-D trips in the same peak hour from day to day. Likewise, link (path) flow is19

also deterministic, representing the mean number of vehicles on a link (path) in the same time period of20

day. The classical traffic assignment model plays a role as the theoretical foundation of most commonly21

used O-D estimation methods, thus those methods can only estimate the deterministic O-D demand. For22

example, the entropy maximizing models [3], maximum likelihood models [4, 5, 6], generalized least23

squares (GLS) models [7, 8, 9], Bayesian inference models [10, 11] and some recent emerging combined24

models [12, 13, 14].25

Both classical traffic assignment models and O-D estimation methods overlook the variation of de-26

mand and link/path flow, which is an essential feature for recurrent traffic. Recent studies on network27

reliability and uncertainty issues start to tackle the stochasticity feature of O-D demand. In these stud-28

ies, the probability distribution of O-D demand is usually employed as a key input of their methods or29

models. For example, [15, 16] sampled O-D demand from given multivariate normal distribution (MVN)30

and evaluated the network performance under equilibrium condition, [17] used similar simulation-based31

method to evaluate travelers’ risk-taking behavior due to probabilistic O-D demand. Both studies in-32

dicate the O-D variation is of great importance to network modeling and behavior analysis. Statistical33

traffic assignment models based on different O-D distribution such as Poisson distribution [18], MVN34

[19], multinomial distribution [20] are proposed to depict the stochasticity feature of traffic conditions.35

[21] summarized those formulations and proposed a unified framework for stochastic modeling of traffic36

flows. Advantages and disadvantages of modeling traffic with those probabilistic distributions are also37
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discussed by [22]. [23, 24] proposed a reliability-based traffic assignment model (RUE) and extended38

it to consider different travelers’ risk taking behavior. [25] further extended the model to consider the39

traffic uncertainty and proposed reliability-based statistical traffic equilibrium. [26, 27] proposed a α-40

reliable mean-excess traffic assignment model which explicitly models the travel time distribution and41

consider the reliability and uncertainty of the travel time on travelers’ route choice behavior.42

As a reverse process of statistical traffic assignment models, some of the O-D estimation methods43

were proposed to estimate the distribution of O-D demand. [28, 29, 30, 31] assumed O-D demand44

follows independent Possion distribution and formulated a maximum likelihood estimator, whereas the45

demand covariance between O-D pairs is not considered. [32] proposed a generalized model to estimated46

the mean and variance of O-D demand by assuming it to be MVN. [33] further extended the model to47

estimate multi-class O-D and used L1 regularizer to shrink the model dimension.48

In summary, the above statistical traffic assignment models and O-D estimation methods adopt the49

same assumption that given Q travelers, the route flow is deterministically determined by assuming the50

route flow to be the mean of the route choices for all demands, f = pQ. Even the route choice probability51

p is determined by stochastic choice models (such as Probit, Logit, etc.), these models still assume that52

a fixed number Qp of travelers will choose this specific route everyday, which omits the variation of53

travelers’ probabilistic choices. Implicitly assumed is that the demand is infinitesimal (also known as54

non-atomic players) where no variation exists. However, recent studies on statistical traffic assignment55

models indicate that the route flow is the aggregation of random choices of finite number of travelers56

and thus also random [21, 34, 35, 36, 37]. With a clearly more realistic setting, travelers are atomic.57

Thus, travelers’ route choice follows a multinomial distribution with the probability calculated by the58

route choice model, f ∼ Multinomial(Q, p). We refer the former assumption as “fixed portions with59

stochastic route choice models ” and the latter as “probabilistic distributions with stochastic route choice60

models”.61

Travelers’ route choice variation is an indispensable component of traffic variation. Our previous62

researches on statistical traffic assignment model show that the travelers’ route choice variation takes63

approximately 20% of the total variation. In behavior science, the variation induced by route choice64

uncertainty is under intensive exploration. [38] discussed the network toll policy under two extreme65

travelers risk-taking behavior (risk-averse and risk-prone). [39] built a Markov process to model the66

day-to-day variation of traffic flow given fixed O-D demand. We show that the ignorance of travelers’67

route choice variation in O-D estimation method will lead to an overestimate of O-D variation. Vari-68

ous researches [16, 40, 41] show that the variance/covariance matrix of O-D demand have a significant69

influence on the traffic equilibrium and network conditions. The influence will be particularly signifi-70

cant when several routes share similar costs as their route choice probability are similar, hence the route71

choice variation is even larger.72

To our best knowledge, there is no method that estimates probabilistic O-D demand and considers73

the travelers’ route choice variation simultaneously. To fill up this gap, we first proposed a generalized74

statistical traffic assignment (GESTA) model incorporating three dimensions of traffic flow variations:75

O-D demand variation, route choice variation and unobserved errors in our previous research [42]. The76

hierarchical formulation of GESTA is represented in Equation 1.77

Level 1 : Xm = X + εe (Unobserved Error)

εe ∼ N (0,Σe)

Level 2 : X = ∆F

F ∼ Multinomial(p̃Q,Σf ) (Route choice variation)

Level 3 : Q ∼ N (q,Σq) (Demend variation)

(1)
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where X,F,Q represent the link/path/OD flow random vector, Σq,Σf ,Σe represent the covariance78

matrix of OD/path flow vector and observation errors, x, f, q is the vector of means of link/path/OD flow79

vector, p̃ .
= diag(p)B and B is a transition matrix, p represents the route choice probability and ∆ is80

path/link incidence matrix, ·o denotes the observed variables.81

In GESTA, level 3 represents the demand variation, which is directly obtained from model assump-82

tions. Level 2 formulation indicates that each traveler makes their route choice independently, thus the83

path flow vector F follows multinomial distribution. Level 1 represents the unknown errors applied to84

the observed link flow vector. After simplification and approximation, the path/link flow distributions85

can be represented by the following proposition.86

Proposition 1. The marginal distribution of F follows,

F ∼ N (f,Σf )

where f = p̃q, Σf = Σf |q + p̃Σqp̃
T , Σf |q is the covariance matrix of path flow conditional on O-D87

demands Q = q, Σf |q = Σf |Q=q, the detailed formulation can be found in [42].88

Using GESTA as the underlying behavioral model, we estimate probabilistic O-D demand from89

various data sources. In this paper, a disaggregated O-D demand estimation framework considering trav-90

elers’ route choice variation is developed to estimate O-D mean vector and variance-covariance matrix91

iteratively, which decomposes a complex estimation problem into two relatively simpler sub-problems,92

and therefore the entire solution algorithm is more friendly for practical use. The proposed framework93

is known as Iterative Generalized Least Square (IGLS)[43]. IGLS contains a large class of statistical94

algorithms, it is probably one of the most efficient computing tools for estimation problems.95

In the sub-problem of estimating O-D demand mean vector q, we extend the statistical interpretation96

of O-D estimation in [44], both single level and bi-level O-D estimation formulations are discussed. The97

OD mean estimation with equilibrium constraints formulation is presented in 2.98

min
f

n
(
∆of − x̂o

)T
Σo
x
−1
(
∆of − x̂o

)
+ (qH −Mf)TΣH

q
−1

(qH −Mf)

s.t. f ∈ Φ+
(2)

where Φ+ is the feasible set of means of path flow vector f . The definition of Φ+ for Deterministic User99

Equilibrium (DUE) and Stochastic User Equilibrium (SUE) have different formulations but share similar100

ideas, and we discussed them separately in the paper.101

In the sub-problem of estimating O-D demand variance-covariance matrix Σq, we utilize the Wishart102

distributed nature of link flow covariance Σx to formulate the basic estimation problem and then apply103

Lasso regularizer and convex relaxation on the basic formulation. The final formulation as an approxi-104

mated maximum likelihood estimator of the OD covariance matrix with Lasso regularization is presented105

in Formulation 3.106

min
Σq

‖So
x − Σo

x‖
2
F + λ ‖Σq‖1

s.t. Σo
x = ∆oΣf |q∆

oT + ∆op̃Σqp̃
T∆oT

Σq ∈ semidefinite(<|Kq |×|Kq |)

(3)

where ‖A‖F =
√

Tr(ATA) and ‖A‖1 =
∑

ij |Aij |. The former one is known as Frobenius Norm,107

which is equivalent to the element-wise L2 norm [45]; the latter one is the element-wise L1 norm. λ is a108

penalty scalar, So
x is the empirical covariance matrix of the observed link flow.109
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Another important issue for O-D estimation method is the observability problem [46, 47]. It is well110

known that the O-D estimation problem is usually a underdetermined system provided with observed111

link counts only [9]. [48] suggests to use second-order statistical information of the observed link flow112

to estimated independent Possion distributed O-D demand. By utilizing the second-order information,113

the Possion distributed O-D demand can be estimated uniquely. [47] proposed to get unique O-D de-114

mand by properly select between observed link flow data and history O-D information. [49] recognize115

that in the statistical O-D estimation problem, as long as the link-path incidence matrix is unimodular,116

the uniqueness of O-D estimation cannot be achieved. In this paper, the observability of the proposed117

statistical O-D estimation method is also examined. It can guarantee that the performance of proposed118

statistical O-D estimation method will be no worse than the conventional deterministic O-D estimation119

methods.120

Our probabilistic OD demand estimation framework is evaluated on both small network and large121

scale network. We construct probabilistic OD demands based on the previous studies or history OD and122

then treat it as the “true” OD demand. Then we simulate the observation data by running the (stochastic)123

user equilibrium model and add some perturbations on the results. The performance of the OD estimation124

formulations are assessed by comparing the estimated ODs to the “true” ODs [50]. We evaluate our125

estimation method under different settings: equilibrium conditions, sensor locations, observation noise,126

and accuracy of the history OD. We also apply the method to a real-world network SR-41 corridor, and127

the Pittsburgh regional network to demonstrate its scalability and computational efficiency.128
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1. INTRODUCTION AND MOTIVATION 
For many decades, the two dominant approaches to represent transport network equilibrium 

have been the Deterministic User Equilibrium (DUE; Wardrop, 1952) and Stochastic User 
Equilibrium (SUE; Daganzo & Sheffi, 1977) models. The choice between these two fundamentally 
leaves us with a choice between two extreme cases, namely that only routes with minimum cost 
are used in DUE, and that (in its typical implementation) all permitted routes are used in SUE 
regardless of their costs. The deficiency of the DUE seems unreasonable given the imperfections 
in drivers’ knowledge and the natural variations in real-life systems.  The deficiency of the SUE 
seems also unreasonable, given that solution algorithms for SUE models only identify a subset of 
the available routes without providing a behavioural mechanism depending on anything 
fundamental in the model (see, e.g., Bekhor et al., 2008).  

We aim to propose a model that - like DUE - addresses equilibration simultaneously with the 
determination of potential choice sets, but neither excludes all sub-optimal routes (as in DUE) 
nor includes all available alternatives (as in SUE) and allows flow allocation according to random 
utility theory (RUT) among used paths. With this aim in mind, we build on our own recent study 
(Watling et al., 2015), where we compared the relative merits of (a) an SUE model based on 
bounded random error terms with (b) the Restricted Stochastic User Equilibrium (RSUE) family 
of models. The RSUE family can be applied with logit and probit models, but admits multiple 
solutions with different equilibrated route sets. We note that the concept of Boundedly Rational 
User Equilibrium (BRUE) has been proposed, being a space of flow solutions representing drivers’ 
inertia to route-switching where drivers are indifferent to route cost differences within 
indifference bands (see, e.g., Mahmassani and Chang, 1987; Di and Liu, 2016). However, BRUE 
models do not generate point estimates of equilibrium, but rather interval estimates. 

Considering all of these perspectives, we aim at developing approaches that draw on elements 
of all of the methods above and making a theoretical contribution in terms of formulation of the 
equilibrium conditions and investigation of their existence/uniqueness. In particular: 
 We aim to find a point estimate of equilibrium, akin to DUE and SUE, and to establish 

conditions under which such equilibria can be guaranteed to exist and be unique. 
 Like DUE and RSUE, we aim to specify equilibrium conditions that distinguish potentially used 

from definitely unused routes, in the equilibrated set of active routes; that is, to develop an 
equilibrium prediction of the used/unused routes that is consistent with the travel costs. 

 Like SUE, we aim to draw on RUT to represent travellers’ misperceptions in travel costs. 
 Like BRUE, we incorporate the notion of a threshold (an externally specified “bound”). 
 A first model specification gives rise to a form of SUE-like model with bounded error terms, 

but importantly with bounds linked to the threshold through RUT. 
 A second model specification gives rise to a stricter version of RSUE, with distinct thresholds 

on used/unused routes incorporated into the equilibrium conditions. 

2. THEORETICAL APPROACH TO CHOICE MODELLING WITH THRESHOLDS  
We consider how the notion of a threshold might be incorporated within a Random Utility 

Model (RUM) setting and we present two alternative candidate formulations and discuss their 
relative merits. Our focus is on closed-form models, and in particular MNL models and variants 
where path overlap is accounted for within the systematic utility (see Prato, 2009).  

2.1. THRESHOLD CHOICE SET MODEL 
This first formulation considers the differences in systematic utility for any threshold 

operation. The particular features we aim to model are: 
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 a threshold is applied to the difference in systematic utilities; 
 an option will only be in the choice set of considered alternatives if it is no more than a 

threshold amount worse in systematic utility than the best alternative available; 
 individuals choose based on a RUM among options in the choice set. 

This model is inspired by an extension of the concepts presented in Watling et al. (2015, §4), 
and in general, in any given instance, several choice probability vectors may satisfy the 
conditions. Let 𝒫 denote the set of feasible choice probability vectors for alternatives i: 

𝒫 = {𝐩 ∶ 𝐩 ∈ ℝ𝒏, 0 ≤ 𝑝𝑖 ≤ 1 (𝑖 = 1,2, … , 𝑛), ∑ 𝑝𝑖 = 1𝑛
𝑖=1 }}  (1) 

Noting that zero probabilities are permitted, any given vector in 𝒫 will divide alternatives into 
chosen (𝑝𝑖 > 0) and non-chosen (𝑝𝑖 = 0) ones. The index-set of chosen alternatives 
corresponding to any vector p is denoted 𝒜̃(𝐩) ⊆ 𝒜 where 𝒜 = {1,2, … , 𝑛} is the universal index 
set of available alternatives. 

We now introduce a function 𝑔 that includes a threshold parameter  > 0, which allows us to 
uniquely define a single reference utility for any given set of chosen alternatives: 

𝑉∗ = 𝑔({𝑉𝑖 ∶ 𝑖 ∈ 𝒜̃(𝐩)}; ) (2) 

where 𝑉𝑖 is the systematic utility of alternative i (for example, 𝑉∗ = max{𝑉𝑖 ∶ 𝑖 ∈ 𝒜̃(𝐩)} −  ). 
The behavioural conditions we then aim to satisfy for the set 𝒜̃(𝐩) of chosen alternatives are: 

 Any chosen alternative must have a systematic utility no lower than V* for the set  𝒜̃(𝐩). 
 Any non-chosen alternative must have a systematic utility less than V* for the set 𝒜̃(𝐩). 
 The probabilities for the chosen alternatives satisfy a RUM over the set  𝒜̃(𝐩). 

The conditions are thus that any 𝐩 ∈ 𝒫 ⊆ ℝ𝒏, with implied set of chosen alternatives indexed 
by 𝒜̃(𝐩) ⊆ 𝒜 and reference utility V* satisfies the required behavioural rules if: 
i) 𝑉𝑖 ≥ 𝑉∗  (𝑖 ∈ 𝒜̃(𝐩)) ; 
ii) 𝑉𝑖 < 𝑉∗  (𝑖 ∈ 𝒜 ∩ 𝒜̃(𝐩)C) ; 
iii) 𝑝𝑖 = 𝜙𝑖(𝐕; 𝒜̃(𝐩))  (𝑖 ∈ 𝒜̃(𝐩))  
where for any set  𝒳 we denote the complement of that set by 𝒳C, and where 𝜙𝑖(𝐕; 𝒜̃(𝐩)) denotes 
a RUM on the set 𝒜̃(𝐩), with relevant systematic utilities picked out of the n-vector V. 

2.2. THRESHOLD TRUNCATION MODEL 
This second formulation considers any threshold operation being based on random utilities. 

Considering an imaginary reference alternative A*, the particular features we aim to model are: 
 a threshold is applied to the difference in random utility between a given alternative and A*; 
 an option will only be in the choice set of considered alternatives if it is no more than a 

threshold amount worse in random utility than the reference alternative A*; 
 for the subset of considered alternatives, indexed by 𝒥 ⊆ {1,2, … . , 𝑛}, the choice probabilities 

are given by the odds associated with the binary choice probabilities of 𝐴𝑗 versus A* for 𝑗 ∈ 𝒥. 

Suppose a specification of random utilities for the real and imaginary alternatives of 𝑈𝑗 =

𝜃𝑉𝑗 + 𝑗  (𝑗 = 1,2 … , 𝑛), 𝑈∗ = 𝜃𝑉∗ + ∗, where (1, 2, … , 𝑛, ∗) are i.i.d. Gumbel. Then, combining 

RUT with a threshold condition and selecting 𝑉∗ = max (𝑉1, 𝑉2, … , 𝑉𝑛) allows us to derive the 
following choice probability model for alternative 𝐴𝑗 from {𝐴1, 𝐴2, … 𝐴𝑛} given systematic utilities 

𝐕 = (𝑉1, 𝑉2, … , 𝑉𝑛) and threshold 𝛿 > 0: 

𝑝𝑗(𝐕; 𝜃, 𝛿) =
(exp(𝜃(𝑉𝑗−max(𝑉1,𝑉2,…,𝑉𝑛)+𝛿))−1)

+

∑ (exp(𝜃(𝑉𝑘−max(𝑉1,𝑉2,…,𝑉𝑛)+𝛿))−1)
+

𝑛
𝑘=1

 (3) 

where the + operator above is such that (𝑥)+ = max (𝑥, 0). It is seen that, in the limit as 𝛿 → ∞, 
this model approaches the MNL model, as would be expected. 

3. NETWORK EQUILIBRIUM PROBLEM 
We now consider how the threshold-based models presented above may be implemented in 

a network equilibrium context where the network is a directed graph consisting of links a (a=1, 
2, …, A). Define dm as the demand for OD-pair m (m=1, 2, …, M), Rm as the index set of all simple 
acyclic paths for OD-pair m, Nm as the number of paths in Rm, and R as the union of the sets Rm so 
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that R = {1,2,..,N}, where 𝑁 = ∑ 𝑁𝑚
𝑀
𝑚=1 . Denote with xmr the flow on path r  Rm, x the N-

dimensional flow-vector on the universal choice set across all M OD-pairs, fa the flow on link a, 
and 𝐟 = (𝑓1, 𝑓2, … , 𝑓𝑎, … , 𝑓𝐴) the A-dimensional link-flow vector. The convex set G of demand-
feasible non-negative path flows is given by: 

𝐺 = {𝐱𝜖ℝ+
𝑁: ∑ 𝑥𝑚𝑟

𝑁𝑚
𝑟=1 = 𝑑𝑚} (4) 

where ℝ+
𝑁 denotes the N-dimensional, non-negative Euclidean space.  Define 𝛿𝑎𝑚𝑟 equal to 1 if 

link a is part of path r for OD-pair m and 0 otherwise, then the convex set F of demand-feasible 
link flows is given by: 

𝐹 = {𝐟𝜖ℝ+
𝐴: 𝑓𝑎 = ∑ ∑ 𝛿𝑎𝑚𝑟 ∙ 𝑥𝑚𝑟

𝑁𝑚
𝑟=1

𝑀
𝑚=1 , 𝐱𝜖𝐺} (5) 

Given the column vectors x and f, define  as the AN-dimensional link-path incidence matrix 
so that the link-path flow relation may be written as 𝐟 = 𝐱. We suppose that the travel cost on 
path r for OD-pair m is additive in the travel costs of the utilised links: 

𝑐𝑚𝑟(𝐱) = ∑ 𝛿𝑎𝑚𝑟 ∙ 𝑡𝑎(𝐱)𝐴
𝑎=1 , 𝑟𝜖𝑅𝑚 𝑎𝑛𝑑 𝐱𝜖𝐺 (6) 

Define 𝐭(𝐟) (𝐭: ℝ+
𝐴 → ℝ+

𝐴) as the vector of generalised link travel cost functions, and 
𝐜(𝐱) (𝐱: ℝ+

𝑁 → ℝ+
𝑁) as the vector of generalised route travel cost functions, then the link-path cost 

relation may be written as 𝐜(𝐱) = T𝐭(𝐱). 
For SUE-style models, we posit random utilities Umr for each route:  

𝑈𝑚𝑟 = −𝜃 ∙ 𝑐𝑚𝑟(𝐱) + 𝜉𝑚𝑟, 𝑟𝜖𝑅𝑚 (7) 

where 𝜉𝑚𝑟 are continuous random variables following some given joint probability distribution, 
and   > 0 is a given parameter. We then define the following functions as the probability relations: 

𝑃𝑚𝑟(𝐜(𝐱)) = 𝑃𝑟(−𝜃 ∙ 𝑐𝑚𝑟(𝐱) + 𝜉𝑚𝑟 ≥ −𝜃 ∙ 𝑐𝑚𝑠(𝐱) + 𝜉𝑚𝑠, ∀𝑠𝜖𝑅𝑚), 𝑟𝜖𝑅𝑚 (8) 

These relations express the probability that path r between OD-pair m will have a perceived 
utility greater than or equal to the utilities of all alternative paths in the universal set of routes 
for that OD-pair. For any non-empty subset 𝑅̃𝑚of 𝑅𝑚 we also define:  

𝑃𝑚𝑟(𝐜(𝐱)|𝑅̃𝑚) = 𝑃𝑟(−𝜃 ∙ 𝑐𝑚𝑟(𝐱) + 𝜉𝑚𝑟 ≥ −𝜃 ∙ 𝑐𝑚𝑠(𝐱) + 𝜉𝑚𝑠, ∀𝑠𝜖𝑅̃𝑚), 𝑟𝜖𝑅̃𝑚 ⊆ 𝑅𝑚 (9) 

That is to say, whenever such a subset is not specified, we suppose 𝑃𝑚𝑟 refers to the universal set. 
In this equilibrium model formulation, we use the Threshold Truncation Model defined in 

section 2.2 within a SUE framework where the systematic utility is equal to the negative of the 
travel cost. In order to accommodate the possibility of either assuming an absolute or relative 
threshold, we consider two cases: 

Relative Cost Model: Variable thresholds 𝛅(𝐜) = (𝛿1(𝐜), 𝛿2(𝐜), … , 𝛿𝑀(𝐜)) where 𝛿𝑚(𝐜) =
(𝜏 − 1) min(𝑐𝑚𝑠: 𝑠𝑅𝑚) and 𝜏 > 1. 
Absolute Cost Model: Constant thresholds 𝛅(𝐜) ≡ 𝛅 = (𝛿1, 𝛿2, … , 𝛿𝑀) where 𝛿𝑚 > 0.  
This yields the following definition: 

Definition 1: Truncated Stochastic User Equilibrium (TSUE) 
The route flow x  G is a TSUE if and only if it is an SUE: 

𝑥𝑚𝑟 = 𝑑𝑚𝑃𝑚𝑟(𝐜(𝐱)) , 𝑟𝑅𝑚 (10) 

and the choice model is given by the truncated logit form based on thresholds 𝛅(𝐜) : 

𝑃𝑚𝑟(𝐜) =
(exp(−𝜃(𝑐𝑚𝑟−min(𝑐𝑚𝑠: 𝑠𝑅𝑚)−𝛿𝑚(𝐜)))−1)

+

∑ (exp(−𝜃(𝑐𝑚𝑡−min(𝑐𝑚𝑠: 𝑠𝑅𝑚)−𝛿𝑚(𝐜)))−1)
+𝑡𝑅𝑚

 ,   𝑟𝑅𝑚 (11) 

We have proven existence and uniqueness of the TMNL SUE (not included in the abstract). 
Then, we want to formulate a model with distinct thresholds on used/unused routes incorporated 
into the equilibrium thresholds (a threshold choice set model allowing general reference 
distributions and general choice models including the TMNL and the MNL). In particular, we 
extend the definition of the Restricted Stochastic User Conditions and the RSUE model (see 
Watling et al., 2015) by incorporating two reference functions, Φ and . The former function Φ 
plays the same role as in RSUE, namely giving a lower bound on the actual cost of unused routes. 
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The latter function , on the other hand, defines a second type of reference cost, namely one 
which gives an upper bound on the actual cost of used routes.  

Definition 2: Restricted Stochastic User Equilibrium with Threshold (RSUET( ,))  
The route flow x  G is a RSUET( ,Ω) if and only if for all r  Rm: 

𝑥𝑚𝑟 > 0 ⇒ 𝑟 ∈ 𝑅̃𝑚 ∧ 𝑥𝑚𝑟 = 𝑑𝑚 ∙ 𝑃𝑚𝑟(𝐜(𝐱)|𝑅̃𝑚) ∧ 𝑐𝑚𝑟(𝐱) ≤ Ω({𝑐𝑚𝑠(𝐱): 𝑠 ∈ 𝑅̃𝑚}; 𝛓𝑚)              (12) 

𝑥𝑚𝑟 = 0 ⇒ 𝑟 ∉ 𝑅̃𝑚 ∧ 𝑐𝑚𝑟(𝐱) ≥ Φ({𝑐𝑚𝑠(𝐱): 𝑠 ∈ 𝑅̃𝑚}; 𝛏𝑚) (13) 

where 𝑃𝑚𝑟(𝐜(𝐱)|𝑅̃𝑚) is given by equation (9).  

Focusing on the properties of a particular ‘absolute threshold’ formulation RSUET(min+τ, 
min+τ) where Φ({𝑐𝑚𝑠(𝐱): 𝑠 ∈ 𝑅̃𝑚}; 𝛏𝑚)= Ω({𝑐𝑚𝑠(𝐱): 𝑠 ∈ 𝑅̃𝑚}; 𝛓𝑚) = 𝜏 + min(𝑐𝑚𝑠: 𝑠𝑅̃𝑚), we 

have proven (i) equivalence of TMNL(𝜏) SUE and TMNL(𝜏) RSUET(min+𝜏, min+𝜏) and (ii) that the 
limit case of TMNL(τ) SUE when 𝜏 approaches infinity is a MNL RSUET(min+𝜏, min+𝜏) and a MNL 
SUE (not included in the abstract). 

4. NUMERICAL EXPERIMENTS 
We present the results of applying the TMNL(τ) SUE and MNL RSUET(min+τ, min+τ) to two 

cases, namely a parallel-route network with a single OD-relation and the Sioux Falls network.  

4.1. PARALLEL ROUTE NETWORK 
Consider a network with three independent routes linking a single OD-pair with a demand of 

200 and link cost-flow relation 𝑐𝑖(𝐱) = 𝑐𝑖(𝑥𝑖) = 𝑡0𝑖 ∙ (1 + 0.3 ∙ (𝑥𝑖 100⁄ )4) for i=1,2,3.  
In the following we evaluate the effect of varying the free-flow travel cost t01 on the solution of 
the TMNL(τ) SUE and the MNL RSUET(min+𝜏, min+𝜏). Assume t02=18, t03=20, θ=0.2 and τ=4. 
Figure 1 illustrates the equilibrated flows on the three routes as a function of t01. A unique 
TMNL(4) SUE solution exists on the whole range of t01. Paths 2 and 3 are ‘activated’ (allocated 
flow) when 𝑐1(𝐱) + 𝜏 increases to t02 and t03, respectively. For t01 > 19.75 path 1 is the costliest 
(allocated least flow), and for t01 > 28.6 then c1(x) > min(c2(x), c3(x)) + 𝜏, and path 1 is thus not 
used. Furthermore, figure 1 highlights a weakness of the MNL RSUET(min+4, min+4), namely that 
there are some ranges of t01 for which no equilibrium solution exists.  

 
Figure 1. Equilibrated flow share across three paths as function of free-flow travel time on path 1 (t01), MNL 

RSUET(min+4, min+4) and TMNL(4) SUE 

4.2. SIOUX FALLS NETWORK 
The Sioux Falls network contains 76 links and 528 OD-pairs. In the following, assume θ=0.2 

and 𝜏=15. We demonstrate the applicability of the TMNL(𝜏) SUE and MNL RSUET(min+𝜏, min+𝜏), 
and we have verified convergence of the solutions. 

On an aggregate level, the results indicate similarity of the solutions across the two model 
formulations; the maximum choice set size is 18 for both applications, the average choice set size 
is 4.27/4.52 for the MNL RSUET/TMNL SUE, and the average and maximum link flow difference 
is 0.01% and 0.17% respectively. On a disaggregate level, a comparison of choice set composition 
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and link flow allocation for a single OD-relation also indicate similar and reasonable results 
(Figure 2). No unexpected links are used, and links on the ‘main direction’ from the origin to the 
destination is allocated the largest share of the flow.  

  
Figure 2 – Left: Equilibrated TMNL(15) SUE link flow shares for single OD-relation (Origin: 1, Destination: 17); Right: 

Equilibrated MNL RSUET(min+15,min+15) link flow shares for single OD-relation (Origin: 1, Destination: 17) 

5. CONCLUSIONS AND FURTHER RESEARCH 
We have formulated two novel models that address equilibration and choice set generation 

in a consistent manner. The introduction of cost thresholds allow the inclusion of some sub-
optimal paths (unlike DUE) without requiring all available alternatives to be used (as in SUE), and 
flow is allocated according to RUT among used paths. We prove existence/uniqueness of 
solutions for one model, and highlight characteristics of the models by applications to two cases. 
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1 Introduction

Car-sharing services have experienced a rapid growth in recent years. In an outlook to-
wards the future, the Boston Consulting Group predicts about 35 million car-sharing users
worldwide by 2021, generating global revenues of 4.7 billion Euros. The most significant
advantage of one-way car-sharing over the two-way system is the higher flexibility, as cus-
tomers do not have to return the vehicles to the original pick-up point. For providers like
Zipcar, DriveNow or car2go, this flexibility often leads to an uneven availability of the cars
and thus coverage of the demand, which results in lower customer satisfaction and less usage
of the vehicles. Consequently, car-sharing operators have to relocate their cars regularly in
order to keep the system profitable. For that purpose, the providers partition their business
area into several zones and relocate cars from zones with an expected overage to zones with
an expected underage. This rebalancing is typically done at night when most of the cars
are sitting idle.
Many authors have addressed this problem of determining optimal relocation strategies,
considering different user-related factors like adoption rates, booking behaviour or time
and type of day [4]. The problem of optimally rebalancing car-sharing vehicles has been
addressed in the literature among others by simulation studies [5, 7], mixed-integer linear
programming [3], stochastic programming [9] or rule based methods [6, 12]. All publications
up to now have the one assumption in common that the car-sharing provider is operating
in a monopoly. This is in contrast with the fact that there are often two or more providers
offering their services in the same city. DriveNow and car2go, for example, competed in
eleven cities in 2016. Car-sharing providers can be seen as retailers who offer a product
at several disjunct locations in a city. This analogy motivates us to consider findings from
retail management that show that competition can have a direct influence on the customers’
demand as well as the companies’ inventories and revenues. In literature, one distinguishes
between stock-out based and assortment based substitution [8]. In the former case, cus-
tomers substitute only when the preferred retailer is out of stock while in the latter case,
customers make their choice among the available assortment. The problem of inventory
competition under stock-out based substitution was introduced by Parlar. He proves the
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existence of a unique Nash equilibrium for the case of two players [10]. Van Ryzin and
Mahajan propose a Multinomial Logit approach to model assortment based substitution.
They assume that each customer associates a certain utility with buying the product at a
retailer’s store and that this utility can be directly influenced by the offered assortment [11].
However, in reality a car-sharing operator may serve both types of customer groups and
thus encounter stock-out based and assortment based substitution simultaneously. Conse-
quently, a hybrid model that combines both types of substitution may be suitable.
The new concept of Mobility as a Service (MaaS) will intensify the competition in the car-
sharing sector, as in MaaS different mobility options like public transport, car-sharing or
bike-sharing as well as different operators can be used with one access card. This motivates
an important research question: How does competition influence the availability of the cars
and as as consequence the optimal rebalancing plan? The three main contributions of our
work are as follows: (1) Formulation of the problem of rebalancing under competition as a
Nash game considering stock-out based and assortment based substitution. (2) Insights into
the optimal rebalancing policies and recommendations how car-sharing providers should re-
act to the presence of a competitor. (3) Comparison and evaluation of the model using
real-life data.

2 Model formulation

We study rebalancing under competition in a single period. For that purpose, we first in-
troduce the monopolistic rebalancing problem (MRP) in a single period by adapting Allen’s
model [1]: A car-sharing company offers cars at price s in n zones. The demands at the
zones can be expressed as random variables Di with the corresponding probability density
functions fi and its cumulative Fi. The expected revenues πi(yi) = si(yi − ∫ yi

0 Fi(d)dd)
depend on the inventory levels yi in each location. To provide the optimal service level at
all zones, the company can rebalance the initial car distribution y0i between the zones at
cost c before the demands are realized. The additional cars received at a zone are denoted
by xi. Thus, we obtain the problem:

(MRP ) max Π(y, x)
s.t. xi + y0i ≥ yi i = 1, ..., n

∑n
i=1 y0i ≥ ∑n

i=1 yi
xi, yi ≥ 0 i = 1, ..., n

The objective is to maximize the expected revenue minus the rebalancing cost summed over
all zones i = 1, ..., n: Π(y, x) ∶= ∑n

i=1 (πi(yi) − cxi). The first constraint ensures that from
each zone no more than the available car stock can be taken, the second that the total num-
ber of cars after rebalancing corresponds to its initial number. Having stated the (MRP),
we derive the corresponding Karush-Kuhn-Tucker conditions that allow us to partition the
zones into sending, dormant and receiving zones. Thus, yi and xi can be determined with-
out explicitly solving the underlying optimization problem. Using the Lagrangian, we show
that a unique solution exists when the revenue function is strictly concave.
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Next, we extend the (MRP) to the competitive case. For that purpose, we consider two
players l and k who offer their car-sharing services in the same n zones. Due to the presence
of the competitor k, player l has to take the influence of k’s inventory levels on his own rev-
enue function πil(yil, yik) into account in each zone i, and vice versa. As a consequence, we
have to adapt the players’ revenue functions while all constraints remain valid. We denote
the resulting problem as competitive rebalancing problem (CRP). To cope with different
customer behaviours, we look at stock-out based as well as assortment based substitution.
In the case of stock-out based substitution, customers are willing to switch at a given sub-
stitution rate bil ∈ [0,1]. That is, bil of k’s customers will substitute in the same zone
from provider l when k has no cars in that zone. Analogous to Parlar’s model [10], each
player maximizes his profit by serving the own demand plus the competitor’s unsatisfied
one. We obtain the following profit function, denoting by Bil the maximum excess de-

mand l can serve: π(yil, yik) = sil(yil−∫ yil
0 Fil(dl)ddl+

yil

∫
0

Bil

∫
yik

bil(dk−yik)fil(dl)fik(dk)ddkddl+
yil

∫
0

∞
∫
Bil

(yil−dl)fil(dl)fik(dk)ddkddl). Since we consider only one product, a higher assortment

corresponds to a higher availability of cars. That is, we can translate assortment based com-
petition into availability based competition. Thus, we assume that each potential customer
chooses between both players after having observed – for instance online – the proximity
of cars to his position. To determine qim, i.e. the share of demand that goes to company
m ∈ {k; l} in zone i, we apply a Discrete Choice model. Using Multinomial Logit [2], we as-
sume that each customer relates a certain utility to the observed proximity of cars. That is,
at each location the demand for car-sharing services is split among the two players according
to qim(yim), which is determined by the inventory levels yim. The corresponding revenue

function reads as follows: πim(yim) = sim (yim −
yim/qim(yim)
∫
0

qim(yim)Fi(di)ddi), m ∈ {k; l}.

Having defined the objective functions for both cases of competition, we prove in a lemma
that, given the competitor’s inventory level, there exists a unique solution to the (CRP).
Furthermore, we show that, for differentiable and strictly monotone probability density
functions, the lemma holds for stock-out based as well as availability based competition. As
both players solve the (CRP) simultaneously, we model this as a non-cooperative newsven-
dor game and show that a unique Nash equilibrium exists for both cases of competition.

3 Computational results

To analyse the effects of competition on the rebalancing policy, we conduct a numerical
study. For that purpose, we consider several scenarios with different amounts of cars per
company, as well as different mean demands and standard deviations for stock-out based
(SB) and availability based (AB) substitution. In each scenario, we vary the substitution
rates and MNL parameters, rebalancing cost as well as initial distribution of the stock. To
demonstrate the effects of competition, we also consider the case of no competition in each
scenario. That is, both players ignore the competitor’s presence. The results in Table 1
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Table 1: Test results showing the profit increase.
Case Player 1 Player 2 Profit increase SB Profit increase AB

# cars Mean # cars Mean P1 P2 P1 P2
1 300 200 300 200 14.16% 14.16% 8.00% 8.00%
2 300 300 300 300 14.13% 14.13% 9.50% 9.50%
3 300 450 300 450 13.36% 13.36% 3.01% 3.01%
4 300 300 100 100 8.01% 21.82% 11.31% 19.66%
5 500 200 500 200 12.38% 12.38% 7.75% 7.75%
6 500 300 500 300 14.31% 14.31% 9.81% 9.81%

show that ignoring the competition comes at high costs, as the players can increase their
profits on average by up to 14 percent when customers substitute stock-out based and up to
15 percent when they substitute availability based. Naturally, the players are reacting to the
competitor’s actions only as long as it is still profitable for them. This is, for example, the
case when the spread between revenues and relocation cost is sufficiently high or when most
of the cars are not initially concentrated in one zone. We then observe for stock-out based
substitution that the providers mostly focus on fulfilling the competitors’ unserved demand,
thus sharing the market. We see the opposite result for availability based substitution: to
gain a larger market share, each player increases the number of cars in a zone when his
competitor does so, too. This also leads to a higher number of rebalancing operations.
When the total expected demand exceeds the providers’ number of cars, the companies
serve the demand in the zones where the cars are initially located and thus significantly
reduce their rebalancing operations.
We further present empirical evidence for these results from car-sharing data in Munich,
where car2go and DriveNow compete. The DriveNow bookings in the second half of 2016
were 70 percent higher than the car2go bookings, while the average number of bookings per
car were comparable for both operators. The fact that DriveNow operated a larger fleet in
that period indicates that the customers made their choices based on availability. A first
analysis of the providers’ car positioning leads to the assumption that both of them ignore
the presence of a competitor.

4 Managerial insights

In this work, we provide insights into optimal rebalancing policies for car-sharing providers
who face competition. Our results show that under stock-out based substitution the
providers tend to divide the market while under availability based substitution they will
compete. This competition leads to a higher number of rebalancing operations. Further-
more, the profitability and the initial car distribution y0i influence the players’ willingness
to react. y0i , so far considered as given, can be made endogenous by formulating a Markov
game, where both players solve the (CRP) in each stage and thus influence the car distribu-
tion in the next period. Additionally, the providers’ optimal fleet sizes can be determined
by adapting a two-stage capacity game, where the optimal fleet size decisions in the first
stage depend on the (CRP) solved in the second stage.
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1 Introduction

Ridesharing1 has emerged as a popular solution to combat ever-increasing congestion along road networks
around the world. The resulting decrease in the number of vehicles can reduce the carbon footprint sig-
nificantly, making ridesharing a mechanism that is all the more desirable from a sustainability perspective.
While these benefits are undoubtedly good for the society, many individual commuters are reluctant to
embrace ridesharing, despite the cost savings that would result. Several factors such as reliability, privacy,
security, and delays contribute to the inconveniences due to ridesharing. Therefore, for the average com-
muter, it may be easier to stick with their existing routine that they are comfortable with, when faced with
an often challenging decision process to determine whether the cost savings is worth the inconvenience.

In order to increase the adoption of ridesharing, the routing, pricing, and cost sharing schemes must be
persuasive to the passenger by addressing the trade-off between the additional delay and cost savings in a
way that ultimately incentivizes them to participate in ridesharing. Traditionally, this notion is captured in
the mechanism design literature by means of a concept called individual rationality, that is, every passenger
is better off (according to some utility function) having participated in ridesharing than not. However, from
a practical perspective, this concept falls short of ensuring that passengers are satisfied during the ride. A
frequent source of frustration are the detours taken to pick up and/or drop off additional passengers, which
inconvenience existing passengers. In order to address these pain points, we propose imposing a stronger
condition called sequential individual rationality, which requires that existing passengers are progressively
better off every time an additional passenger is picked up. Such a property would also ensure some robustness,
e.g., in a dynamic/online setting, passengers would remain satisfied even if a future pickup is canceled.

Our central goal in this work is to develop a framework for cost sharing in ridesharing that explicitly
models the “inconvenience cost” experienced by the passengers due to the detours, and explore the properties
and consequences of imposing sequential individual rationality and fairness on the routing and cost sharing
schemes.

1.1 Summary of our Contributions

First, we introduce our cost sharing framework, in which we model the disutility to an existing passenger
at any stage of the ride as the sum of the passenger’s monetary payment for the ride (as determined by
the cost sharing scheme), and an inconvenience cost term (as a function of the detour due to ridesharing),
assuming that there are no more passengers to be picked up from there on. Sequential individual rationality
then requires this disutility to be non-increasing throughout the ride, for all passengers. In other words,
every time a new passenger is picked up, the resulting additional detour must be worth the additional cost
savings to the existing passengers.

Then, we provide an exact characterization for any route to be “SIR-feasible”, that is, there exists
some budget-balanced cost sharing scheme that is sequentially individually rational on that route. Such
a characterization would be useful in designing “cost-aware” routing algorithms that suggest SIR-feasible

1The term “ridesharing” in popular culture has become a buzzword that refers to any ride-booking or ride-hailing service
such as Uber and Lyft, even if there is only one passenger taking the ride and there is no sharing involved. Recently, the
Associated Press has criticized this abuse of the term [8]. In this work, we use the term “ridesharing” to denote only those
services that allow two or more passengers to share rides, such as UberPool and LyftLine, in addition to community carpooling.



routes (when grouping ridesharing requests and assigning them to vehicles). These SIR-feasibility constraints
are necessarily complex, so, we consider a simplified scenario where all the passengers are travelling to a
common destination. For this “single dropoff” scenario, we show that the SIR-feasibility constraints simplify
to natural upper bounds on the incremental detours, that keep shrinking as the ride progresses towards the
destination and as more passengers are picked up. We also show, in a series of theorems, that these bounds
on incremental detours can be aggregated to establish upper and lower bounds (that are sublinear in the
number of passengers in realistic scenarios) on the total detour endured by a passenger as a fraction of their
direct distance to their destination.

Next, we observe that budget-balanced cost sharing schemes that are SIR can be alternately viewed as
benefit sharing schemes, where the benefit being shared is the total decrease in the disutilities of all the
passengers, every time a new passenger is picked up. This “duality” enables a natural definition of sequential
fairness that requires a portion of the incremental benefit to be distributed among the existing passengers in
proportion to the inconvenience costs they suffer due to picking up the new passenger. We then present an
exact characterization of sequentially fair cost sharing schemes for the single dropoff scenario, which exposes
several useful structural properties of such schemes, including a strong requirement that passengers must
compensate each other for the detour inconveniences that they cause.

Finally, we explore some important algorithmic questions motivated by sequential individual rationality,
most of which are left open for future work. In particular, it is unknown, even for the single dropoff scenario,
whether there exists a polynomial time algorithm to check for the existence of SIR-feasible routes, when
restricted to a metric space (we show that it is NP-hard otherwise). Even if so, we show that optimizing for
total distance traveled over SIR-feasible routes is NP-hard (through a reduction from a variant of Metric-
TSP). We then consider a variant of the vehicle routing problem where passengers are allocated to vehicles
such that the total “vehicle-miles” traveled is minimized. While this problem is known to be NP-hard in
general, we show that it can be solved in polynomial time given a fixed ordering on the pickup points.
Analyzing the impact of imposing SIR-feasibility on the resulting vehicle-routes is left open. We conclude
with more open directions—connections to the online mechanism design literature and extensions to multiple
dropoff scenarios.

1.2 Related Work

The cost sharing problem for ridesharing has garnered relatively little attention in literature (compared
to the ride matching and route optimization problems) – in most existing schemes, individual passengers
are either asked to post what they are willing to pay in advance [5], share the total cost proportionately
among themselves according to the distances travelled [2, 10], or negotiate their cost shares on their own
during/after the ride. Such methods ignore the real-time costs and delays incurred during the ride (as in the
first instance), are insensitive to the disproportionate delays encountered during the ride (as in the second
instance), or lead to a complicated and often uncomfortable negotiation process between possible strangers
(as in the third instance).

Recent work has studied cost sharing when passengers have significant autonomy in choosing their rides or
forming their own ridesharing groups, e.g., cost sharing schemes based on the concept of kernel in cooperative
game theory [4], second-price auction based solutions [14], and market based ridematching models with
deficit control [19]. Fair cost sharing in ridesharing has also been studied in [13] under a mechanism design
framework, where an individually rational VCG-based payment scheme is modified to recover budget-balance
at the cost of incentive compatibility. Our work differs from all the above in that we do not make any
assumptions about the mechanics of ride matching; our cost sharing model is independent of the routing
framework (static or dynamic), and is applicable to community carpooling and commercial ridesharing
providers alike. Our work is also different from the problem of pricing in ridesharing (see, e.g., [3]); our focus
is on sharing the resulting cost among the passengers.

To the best of our knowledge, all previous works on ridesharing problems to have addressed individual
rationality and/or detour limits have treated them as independent constraints, e.g., [13, 17, 18]. In contrast,
in our model, requiring (a strong version of) individual rationality induces natural bounds on the detours
experienced by the ridesharing passengers.

Variations of individual rationality involving temporal aspects are well studied in the economics literature,
e.g., ex-ante, interim, and ex-post individual rationality in mechanism design [16], and sequential individual



rationality in bargaining and repeated games [7]. However, to the best of our knowledge, we are the first
to explore its applicability to the ridesharing problem2 and its consequences and fairness properties of the
resulting outcomes.

There is an extensive literature on cooperative game theory and fair division [12, 15] that suggest various
cost sharing schemes that can be analyzed in our framework. Our view of fairness relies on a different view
of how the total incremental benefit due to ridesharing is allocated among the passengers during each stage
of the ride (sequential fairness). While we believe the two approaches are not independent, exploring the
connections is beyond the scope of this work.

Finally, there is a plethora of work when it comes to optimization problems in ridesharing [1, 9, 17].
While the constraints on detours induced by the sequential individual rationality constraints can augment
any routing optimization problem to make it more challenging, in this paper, we focus on the problem of
finding an optimal allocation of passengers to vehicles (that minimizes the total vehicle-miles traveled), which
is a variant of the vehicle routing problem (VRP) [6].

2 Illustrative Example: A Single Dropoff Scenario

Due to space constraints, in the rest of this abstract, we limit ourselves to describing a simple single dropoff
ridesharing scenario using which we illustrate the key concept of sequential individual rationality and its
consequences for cost-aware routing. We refer the interested reader to the full version of our work [11].

Consider n = 3 passengers, picked up from their sources S1, S2, S3 (in that order), and travelling to
a common destination D. Let the set of passengers be N = {1, 2, 3}. The progression of the route as the
passengers are picked up one by one, is depicted in Fig. 1. Given the final route, the total distances traveled
by passengers 1, 2 and 3 are d1(N ) = S1S2 +S2S3 +S3D, d2(N ) = S2S3 +S3D and d3(N ) = S3D. The total
distance traveled by the vehicle is d(N ) = S1S2 + S2S3 + S3D, which is the same as the distance traveled
by the first passenger. The operational cost is thus OC(N ) = αop(S1S2 +S2S3 +S3D), where αop > 0 is the
operating cost per unit distance.

Figure 1: Route progress while picking up passengers traveling to a common destination.

Cost Sharing Scheme: A cost sharing scheme f is a function that specifies, for any subset S ⊆ N , how
OC(S) is distributed among the passengers in S. That is, f(i, S) denotes the portion of OC(S) allocated to
passenger i ∈ S. If f is a budget-balanced cost sharing scheme, we have

∑
i∈S f(i, S) = OC(S) for all S ⊆ N .

Inconvenience Cost: In a ride involving a subset of passengers S ⊆ N , for each i ∈ S, the inconvenience
cost incurred due to other passengers is proportional to the amount of detour caused by the passengers in
S − {i} to i. The constant of proportionality, αi ≥ 0, is the inconvenience cost of i per unit distance. For
example,

IC1({1, 2}) = α1(S1S2 + S2D − S1D),

IC2({1, 2, 3}) = α2(S2S3 + S3D − S2D),

IC3({1, 2, 3}) = α3(S3D − S3D) = 0.

Disutility: When a subset of passengers S ⊆ N share a ride, the disutility to a passenger i ∈ S is defined
as the sum of their monetary payment for the ride and their inconvenience cost due to any detours, that is,

DU i(S) = f(i, S) + ICi(S).

2By extension, we believe that any cost sharing or pricing framework involving online resource allocation where new jobs
affect existing jobs should benefit from the concept of sequential individual rationality and fairness.



Individual Rationality: A cost sharing scheme f is individually rational (IR) if DU i(N ) ≤ DU i({i}), for
all i ∈ N . In our example, when f is budget-balanced, these IR conditions can be written as:

f(1,N ) + α1(S1S2 + S2S3 + S3D − S1D) ≤ αopS1D,

f(2,N ) + α2(S2S3 + S3D − S2D) ≤ αopS2D,

f(3,N ) ≤ αopS3D.

Sequential Individual Rationality: IR requires that passengers are better off ridesharing than not, but
by taking into account their disutilities only at the end of their ride. In that sense, it is a static property.
To encourage wider adoption of ridesharing, we need to address the pain points of ridesharing passengers
during the ride as well. An important class of such pain points is when the vehicle undertakes detours to
pick up and drop off other passengers. Thus, we propose a stronger property that requires that IR hold at
every stage of the ride, that is, every time a new passenger is picked up. We call this property “sequential”
IR (SIR). For example, SIR for passenger 1 would mean DU1(N ) ≤ DU1(N \ {3}) ≤ DU1(N \ {2, 3}), that
is, the disutilities are nonincreasing throughout the ride. Thus, the SIR constraints for our example are:

f(1,N ) + α1(S1S2 + S2S3 + S3D − S1D) ≤ f(1,N \ {3}) + α1(S1S2 + S2D − S1D) ≤ αopS1D,

f(2,N ) + α2(S2S3 + S3D − S2D) ≤ f(2,N \ {3}) ≤ αopS2D,

f(3,N ) ≤ αopS3D.

SIR-Feasibility: We say that a route is SIR-feasible if there exists a budget-balanced cost sharing scheme
f that is SIR on that route. In our example, a set of necessary conditions (which can also be shown to be
sufficient) for the final route to be SIR-feasible is therefore obtained by first summing up the above SIR
constraints (at each stage), then using budget-balance of f , and simplifying:

S2S3 + S3D − S2D ≤
αop

αop + α1 + α2
S3D and S1S2 + S2D − S1D ≤

αop

αop + α1
S2D.

SIR-Feasible Routes and Cost-Aware Routing: Upon closer inspection, we note that the left hand
sides of the above SIR-feasibility constraints are nothing but the incremental detours due to picking up
subsequent passengers. Thus, these constraints can be viewed as imposing upper bounds on the permissible
incremental detours at every stage of the ride. An interesting observation is that these bounds decrease
with increasing number of passengers as well as increasing proximity to the destination, which means that as
more and more passengers are picked up, the permissible incremental detour to pick up yet another passenger
keeps shrinking, which is natural to expect. For the passengers in our example, Fig. 2 shows the evolution
of the “SIR-feasible region” (points from which the next passenger can be picked up so that the resultant
route is SIR-feasible) in Euclidean space, when αi = αop for i = 1, 2, 3.

Figure 2: Evolution of the SIR-feasible region (darker shade) while picking up passengers that are traveling
to a common destination. Note that the region diminishes rapidly with every subsequent pickup.
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Cooperative Scheme - An Alternative Approach to Equitable
and Pareto-Improving System Optimum

Sayeeda Bint Ayaz∗ Song Gao† Hyoshin Park‡

1 Introduction

User Equilibrium (UE) is based on the assumption that travelers behave selfishly in a non-cooperative man-
ner to minimize their own travel cost. System Optimum (SO) isa traffic state where the total cost of the
system is minimized. However, SO is not stable as drivers on slow routes will likely shift to the fast routes,
and cause the system to revert back to UE. Therefore, driversneed to be penalized through charges or com-
pensated through rewards for the system to move towards SO. The study of congestion pricing is traced back
to the early twentieth century when Pigou (1920) recommended a tax to be levied on any market activity that
generates negative externalities. Vickrey (1969) proposed a time-varying toll that could completely elimi-
nate queuing delay, and thereby maximize system efficiency.A plethora of studies have been conducted in
this area since then.

Despite its theoretical appeal, congestion pricing continues to be a hard sell to people. Major proposals
have been remonstrated by public or political opposition. For example, cordon tolling schemes for Edinburgh
and Manchester in the UK were rejected by public referenda (2005 and 2008). An online petition to the
UK government (2007) attracted more than 1.8 million signatures against road pricing, and effectively put
an end to plans for a national scheme in the UK for the time being. A cordon toll plan for New York
City was stopped by the New York state legislature (2008) when it declined to vote on the proposal. These
setbacks illustrate the difficulties of designing congestion pricing schemes that are both efficient and publicly
acceptable (de Palma and Lindsey, 2011).

There are a wide range of factors for the setbacks, and equitability is one of the most cited. Congestion
pricing sometimes is characterized as a “regressive tax” (Small, 2007) in that high income travelers who
usually have a high value of time (VOT) could benefit at the cost of low income travelers’ loss. Innovative
solutions to the equitability problem have focused on the so-called Pareto-improving schemes, where no
traveler is worse off compared to the no-toll case. Examplesinclude a hybrid scheme between rationing
and pricing (Daganzo, 1995), alternating charging a given fraction of the drivers (Daganzo and Garcia,
2000) credit-based scheme (e.g., Kockelman and Kalmanje, 2005), tradable credit scheme (e.g., Yang and
Wang, 2011; Nie, 2015), and toll-and-subsidy scheme (e.g.,Guo and Yang, 2010; Liu et al., 2009; Nie
and Liu, 2010). Lawphongpanich and Yin (2010) solve the Pareto-optimum pricing problem in a general
network.
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2 Research Summary

In this study, an alternative approach is adopted to achieveequitable and Pareto-improving system optimum
based on cooperation among travelers assisted by defector penalty. As reviewed in Klein and Ben-Elia
(2016), cooperation has been studied extensively in behavioral economics and game theory to resolve so-
cial dilemmas such as Prison’s Dilemma (Dawes, 1980). Evolutionary game theory provides a competent
theoretical framework for addressing the subtleties of cooperation in such situations (e.g., Murnighan and
Roth, 1983; Fehr and Gächter, 2002; Boyd et al., 2003; Wu andWang, 2007). Helbing et al. (2005) con-
ducted experiments on humans playing two-person route choice games in a computer laboratory to study
decision behavior in repeated games. Results show that a taking-turn strategy that achieves SO emerges
after the two players have enough experience to perceive thevalue of cooperation. However, computer sim-
ulations and additional experiments indicate that oscillatory cooperation in route choice games with four
players emerge only after a long time period (rarely within 300 iterations).

Almost all traffic equilibrium studies make the assumption that travelers are non-cooperative, for a good
reason. With the large number of travelers, the time it takesfor cooperation to emerge is too long for
the assumption to be practically valid. Penalty to defectors (people who do not cooperate) has been sug-
gested (Helbing et al., 2005; Klein and Ben-Elia, 2016) to promote cooperation. This study operationalizes
the idea by performing theoretical analyses in a general network with heterogenous VOT among travelers.
In relation to the literature, a hybrid scheme between pricing and rationing in Daganzo (1995) for a single
bottleneck with flexible demand bears the most resemblance to the current work. The major distinction is
that the cooperative scheme in this study is applied to routechoice, both deterministic and stochastic, in a
general network.

In the preliminary analysis, it is shown that under mild conditions, a cooperative scheme always exists for
a single-origin-destination (OD) two-route network to ensure equitable and Pareto-improving SO, regardless
of VOT distribution, even when the Pareto-improving is in terms of travel time only, exclusive of potential
rewards received by cooperators. When the VOT is bounded from above, a cooperative scheme without
financial transactions always exists, in which case the defector penalty is high enough so that all travelers
cooperate. This last feature is especially appealing in that the public tends to view congestion pricing as
tax and this perception almost dooms any such pricing schemes even if they are Pareto-improving. A more
practical and potentially more appealing case is also discussed where a certain number of defectors exist.
Intended contributions of planned work include: 1) extension of the analysis to a general network where
a traveler might travel between multiple OD’s and the decision to participate in the cooperative scheme is
person-specific while not OD-specific, and 2) extension of the analysis to probabilistic route choice so that
stochastic UE (SUE) emerges without interventions.

It is the authors’ belief that traveler cooperation will bring about transformative changes to how the
transportation system is managed, and its implementation can be accelerated by technologies including
connected and autonomous vehicles. Specifically, with fully autonomous vehicles, the barrier to participation
in the cooperative scheme due to cognitive constraint (e.g., inertia against regular switching to potentially
unfamiliar routes) and disruption to the execution due to human errors (e.g., failing to follow specified route)
can be significantly reduced, and even eliminated. Future research will be focused on the behavioral and
institutional aspects to provide a comprehensive assessment of the feasibility and efficacy of the cooperative
scheme.
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3 Preliminary Analysis in a Simple Network

Consider a single-OD network with fixed demandd, connected by two routes: Fast Route with a travel time
tF at SO and Slow Route with a travel timetS at SO. The two routes have the same travel time at UE,
tUE , andtF < tUE < tS . xF andxS are the SO flows (positive integers) on Fast Route and Slow Route
respectively, andxF + xS = d. Travel time is a strictly increasing function of flow.

A cooperative scheme is defined as travelers taking turns to use Fast Route. Participants of the cooper-
ative scheme are called “cooperators”. They use Fast Route on some days and Slow Route on other days
following the guidance of a central controller to maintain an SO flow pattern on each day, even though the
composition of the flow varies from day to day due to turn taking.

When all travelers are cooperators, a naive turn-taking strategy is such that in each cycle ofd days, each
cooperator uses Fast Route forxF days and Slow Route forxS days. The average travel time for each
cooperator over a cycle is the average SO travel time:

tSO =
xF tF + xStS

d
(1)

It is evident thattF < tSO < tUE < tS . A shorter cycle is preferred as it demonstrates the value ofturn-
taking in shorter time and thus more appealing for getting public acceptance. With an improved strategy,
cooperators take turns by blocks. Letg be the greatest common factor ofxF andxS . Cooperators are
grouped intod/g blocks. In each cycle ofd/g days, each block of cooperator uses Fast Route forxF /g
days and Slow Route forxS/g days. The resulting average travel time over a cycle is stilltSO. In practical
applications, the cycle length might need to be controlled below a fairly small number, say, 5 working days,
to have a realistic chance of acceptance. In such cases, indifference to small travel time differences (e.g.,
a 5-minute difference for a 1-hour trip) can be exploited such that a small number of approximately equal-
sized blocks result in approximately equal average travel time for each cooperator with the differences under
a certain threshold.

The cooperative scheme is not stable, as a “defector” who stays on Fast Route all the time has a lower
travel time oftF than a cooperator. As more travelers defect, the cooperative scheme is broken and the
system reverts back to UE. One way to maintain the cooperative scheme is to impose a defector penaltyτ to
make defection more costly than or at least as costly as cooperation.

Homogeneous VOT

If a single VOT ofβ̄ is assumed for all the travelers,τ ≥ β̄(tSO − tF ) = β̄(tS − tF )xS/d.
Whenτ > β̄(tS − tF )xS/d, defection is more costly than cooperation, and thus no defectors exist and

no financial transactions.
When the penalty is exactlȳβ(tS−tF )xS/d and the penalty collected from defectors is distributed evenly

to cooperators, defection is as costly as cooperation. Multiple cooperative schemes exist with different
number of defectors,n, ranging from0 toxF . Whenn = 0, the cooperative scheme is the same as described
above. When0 < n < xF , cooperators have to use Fast Route proportionally less often than whenn = 0 to
maintain the SO flow pattern, and their average travel time

tCS(n) =
(xF − n)tF + xStS

d− n
. (2)

tCS(n) is an increasing function ofn, andtCS(n) > tCS(0) = tSO, ∀n > 0. In other words, given that
the total system travel time remains at the SO value, the reduction in travel time for defectors (tF < tSO)
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is at the cost of cooperators in terms of increased travel time. The increased travel time is compensated for
by the re-distributed defector payment. It can be shown mathematically that defectors and cooperators have
the same generalized cost (combining time and monetary costs) equal totSO (in time units). Intuitively, the
payment is a transfer within the system and thus does not affect total system cost, which remains the SO total
travel time. The generalized costs of a defector and cooperator are equal as there are positive numbers of
both (non-corner solution), and as a result, they must be equal to the average SO travel time. Whenn = xF ,
the cooperative scheme degenerates to traditional congestion pricing with toll re-distribution, where no turn-
taking is happening as Fast Route is filled up by defectors. Note that a cooperative scheme that does not
maintain an SO flow pattern (but still better than UE in total travel cost) is still possible whenn = xF .

Heterogeneous VOT

Realistically, VOT is heterogeneous among travelers. Letβ be the random VOT distributed over travelers.
If the support ofβ has an upper bounďβ, it is trivial to show that a cooperative scheme (maintaining SO
flow pattern) always exists with the defector penaltyτ ≥ β̌(tS − tF )xS/d. This is a much milder condition
compared to those for Pareto-improving congestion pricingwith toll re-distribution (Nie and Liu, 2010). An
added advantage, as mentioned previously, is that no financial transactions are needed and thus the dooming
perception of “tax” is avoided.

Practical considerations might lead to an upper bound on thedefector penalty, for example, to avoid
the perception of forced cooperation with the government. Whenτ < β̌(tS − tF )xS/d, a traveler with
the threshold VOT,̈β = (1/τ)(tS − tF )xS/d, is indifferent between cooperation and defection. Travelers
with a VOT higher than̈β will defect while those with a VOT lower than̈β will cooperate. The existence
condition of the scheme is thus a condition to ensure that thenumber of defectors is no larger thanxF . With
the same re-distribution scheme, it can be shown that every traveler is better off compared to UE1, although
the generalized cost is not equalized among travelers due toheterogeneous VOT.

A potentially more appealing scheme is to set the penalty to avalue high enough but not too high, so that
a certain number of defectors exist while the travel time of cooperators is strictly better than that in UE. It
appeals to high-VOT travelers by giving them an option to payfor better travel time; it appeals to low-VOT
travelers by reducing their travel time and on top of that, providing monetary rewards (re-distributed defector
penalty). The number of defectors to ensure a strictly improving travel time for cooperators is such that

n <
d(tUE − tS) + xF (tS − tF )

tUE − tF
. (3)

Let Fβ(·) be the cumulative distribution function ofβ. The penalty corresponding to a given number of
defectorsn is F−1

β (d− n)(tS − tF )xS/d.

1The traveler with threshold VOT,̈β, has a generalized cost oftSO that is strictly better thantUE . S/he can serve as a reference for
a regular defectors or cooperators whose VOT is different from β̈. A regular defector has a higher VOT and the same travel time as the
threshold defector. It follows that the travel time savingtUE − tF is more valuable than for the threshold defector in terms of offsetting
the penalty. The threshold defector is better off and thus the regular defector is also better off. A regular cooperator has a lower VOT
and the same travel time as the threshold cooperator. When the regular cooperator’s travel time is lower than that in UE, s/he is better
off since the re-distributed penalty can only further reduce the generalized cost. When the regular cooperator’s travel time is higher
than that in UE, the increase in travel time is less detrimental than for the threshold cooperator in terms of offsetting the re-distributed
penalty. The threshold cooperator is better off and thus theregular cooperator is also better off.
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Split the bill by sharing the ride-sharing services: A study on optimal ride-sharing 
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Abstract 

Real-time ride sharing is a one-time car sharing service made between matching users often on short 
notice (Amey et.al. 2011, Kowshik 1996). It is a two-sided market model where the firm offers a 
platform for peer-to-peer interaction between potential drivers and passengers. For instance, a big 
player in this relatively new transportation model is Uber. Uber is an online transportation company 
that offers its customers the service of transportation from their current location. Similar “Ride 
Sharing Service Provider” (RSP) companies include Lyft, Sidecar, Didi etc. Uber has shown 
tremendous growth since its inception in 2009 (Hall & Krueger 2015). Studies show that ride-sharing 
services are going to continue to grow (Hall & Krueger 2015, Chen et.al. 2015, Watanabe et.al. 2016). 
Unlike traditional taxi services, an RSP doesn't own a single vehicle in its "fleet". Instead, third party 
contractors, called "driver-partners" get transportation service requests from nearby, potential 
passengers via a smartphone (iPhone, Android etc.). The requests are sent by the passenger after she 
browses through all the drivers nearby and the expected waiting time for arrival. Using the GPS 
navigation system on the phone, the driver picks up the customer from her location. After the ride, 
the passenger pays for the service through the app. The RSP keeps a certain percentage of the net 
fare and the rest goes to the driver.  

RSP’s offers mainly two classes of services: (1) Shared/Pooled ride and (2) Solo ride. Shared/Pooled 
rides matches passengers with other passengers travelling in the same direction and charge them a 
lower fare than what they would have had to pay if they chose to travel alone. Services like UberPool 
and Lyft Line are examples of such modes. Thus, if a successful match is found, the passenger’s travel 
expense is lower, and the lower price attracts more passengers thereby increasing the revenue of 
drivers and the RSP. Also, if more passengers choose to pool, there will be less cars on the road, thus 
reducing traffic congestion and environmental pollution. On the flip side however, there is a great 
deal of uncertainty whether a match will be found within a reasonable time. Passengers also incur a 
cost of sharing for riding with a stranger who may or may not be pleasant.  From the drivers’ side, 
they prefer two separate solo rides to one pooled ride since the former pays more and it is often too 
much of a hassle to locate, pick-up and drop off two different passengers in a single ride. In this study, 
we model the pros and cons of offering shared rides by the RSP and find the optimal strategies that 
the RSP should take depending on passenger parameters; when to offer pooled rides besides solo 
rides and how to price it optimally so as to maximize the revenue. 



 

Whenever a passenger has to choose her options, it is reasonable to assume that the top two criteria 
she looks into are her total cost and expected arrival time at destination. It is also reasonable to 
assume that there are different types of passengers whose utility for cost and time are different such 
that they prefer different classes of vehicles. This opens up the potential for market differentiation. 
Since perfect price discrimination is not feasible in real life, the RSP can extract more consumer 
surplus using screening mechanism. In our model, we have included the cost of sharing besides the 
cost of waiting. The cost of sharing represents the 'costs' or disutility incurred by sharing the ride, 
that is not captured by the fare charged or the value of time for the passenger. . It encompasses the 
cost of privacy, the risk associated with travelling with a stranger etc. For example, if the passenger 
wants to make a phone call or is with a friend such that sharing the ride with a third party would be 
uncomfortable due to space constraints or if the passenger simply doesn't like to travel with a 
stranger, her cost of sharing will be high.  

Traditional research on service industry based on queueing theory focuses on observable metrics 
like price and time. Vast literature on optimal service policies and design of queueing systems based 
on minimizing the expected delay or waiting time is available (Carmon et.al. 1995, Larson 1987, 
Anderson 1973). But not accounting the sharing cost and ignoring the perception of the customers 
towards waiting while being serviced can lead to policies that may be optimal in terms of minimizing 
the average delay, but may not be in the best interest of the firm in terms of long term profit. Hence 
to develop a model that captures the decision making process of passengers closer to real life 
scenario, we incorporate cost of sharing into our model as well. In this regard, our work is an addition 
to the existing literature.  

We assume that there are sufficiently high number of cars available in the area so that the only 
waiting a passenger needs to make is to find a potential match to share the ride (if she chooses to 
share). If the request was for a solo ride, the passenger starts her journey and the journey time is 
distributed according to an exponential distribution. At the end of the journey, the passenger pays a 
specific fare. In contrast, if the request was for a pooled ride, the RSP searches for a potential match 
and if a match is not found within a maximum specified time, the passengers makes the journey solo, 
with journey time distributed according to an exponential distribution with same rate as a solo ride 
but pays a lower fare. However, if a match is found, she shares the ride and has to pay only half of the 
above rate, but her journey time is now distributed according to an exponential distribution, with 
mean travel time greater than that of a solo ride.  

We begin our analysis by assuming that all passengers are identical with respect to their cost of 
waiting time and cost of sharing the ride. Later we will consider different types of passengers with 
respect to the costs. Our goal is to find the equilibrium strategy ‘q’, which is the probability of a 
passenger choosing to share the ride. Hence q=0 implies nobody wants to share the ride, q=1 implies 



everyone opts to share and 0<q<1 implies passengers are indifferent between sharing and riding 
solo, which can be viewed as if the passengers decide the mode of travel by flipping a biased coin. We 
find explicit expressions for the probability of successfully finding a match if a passenger choose to 
share. Based on the utility functions for solo and shared ride, the probability of getting a match and 
all other given parameters, we find that a unique symmetric Nash equilibrium strategy exists. We 
provide explicit conditions over the cost of waiting and the cost of sharing to determine whether the 
unique equilibrium strategy is pure (to ride solo or to pool) or mixed (pool with certain probability). 
We find that omitting sharing costs from the model, in at least some cases give different equilibrium 
strategies, which indicates that RSPs should include it in addition to the cost of waiting time for the 
passengers.   

 

Once we find the equilibrium strategies for the passengers, we find the optimal prices to charge the 
two modes of travel that maximizes the RSPs revenue. Both homogeneous and heterogeneous 
passenger base are considered. For a homogenous set of passengers, the optimal strategy of the RSP 
is found to offer only solo rides and set the price that extracts the entire surplus from the passengers. 
In case of heterogeneous passenger base, we consider two types of passengers with different journey 
valuation and cost of waiting. The type of a passenger is private information, i.e., only the passenger 
knows their type with certainty and the RSP cannot distinguish between the two. Every other 
parameters are assumed to be common knowledge. 

Because of asymmetrical information, perfect price discrimination is not possible by the RSP. Hence 
it implements second degree price discrimination based on service quality differentiation 
(Fudenberg & Tirole 1991, Varian 1989, Maskin 1984). We employ self-selection mechanism design 
and find explicit conditions required for a strategy to be optimal. We also find conditions under which 
it is never optimal to offer pooled rides.  

So far we have assumed that the number of drivers was unlimited. However, the prices that the RSPs 
like Uber charge the customers has a direct effect on the willingness of drivers to provide the service 
as the drivers get paid a specific proportion of the revenue. So the availability of drivers and cars in 
the market is a finite value, dependent on the prices charged by the RSP. Our research aims to analyze 
the impact of limiting the number of available cars on the design of the optimal price menu. We also 
try to analyze how the pricing strategies would affect the traffic density in the steady state by finding 
the proportion of pooled rides vs. solo rides.   
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Inventory Rebalancing and Minimum Stop-Over Routes for

One-Way Electric Vehicle Sharing Systems

Yinglei Li Sung Hoon Chung

Abstract

Electric vehicles are generally considered as an environmentally friendly alternative to conventional

vehicles that use fossil fuels. Car sharing systems have gained an increasing attention due to their

positive aspects such as increasing mobility, reducing pollution, and mitigating traffic congestion.

Electric vehicle sharing systems then have a great potential to further promote environmental

sustainability. In this paper, we tackle the problem of rebalancing the inventory of one-way

electric vehicle sharing systems by proposing a novel dynamic pricing approach. We propose

a model that helps establish a self-balancing inventory system through dynamic pricing for

which a system operator proposes to incoming users a better price if they choose an alternative

combination of pick-up and drop-off stations that will improve the system inventory balance.

The inventory matrix is updated dynamically every time a reservation is made and a vehicle

return occurs, and the requirement that electric vehicles need to be recharged after a return to

be available for the next user is taken into account. In addition, we design a stop-over station

recommendation system for trips longer than the range of electric vehicles, which we call minimum

stop-over path cover problem. Furthermore, we present computationally tractable algorithms

to implement the proposed model, which is a requisite for implementing dynamic pricing and

stop-over station recommendation system. We provide examples in which the proposed dynamic

pricing approach and a staff-based rebalancing method are compared.

Keywords: Electric vehicle sharing, One-way car sharing, Dynamic pricing, Minimum stop-over

path cover

Electric vehicles (EVs) are generally considered as an environmentally friendly alternative to

conventional vehicles, as EVs can reduce local air pollution, green house gas (GHG) emissions, and

traffic noise. Car manufacturers have commercialized several EVs, especially targeting the urban
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market. There are, however, barriers that prevent the wide spread adoption of EVs, such as the

lack of charging infrastructure and higher price than conventional cars.

In urban areas, owning a car could be challenging due to expensive parking fees, high maintenance

cost, and traffic congestion especially during rush hours. Public transportation is widely used for a

daily commute and for some other activities but urban residents may still need a car from time to

time for, e.g., shopping and weekend excursions. A car sharing system has reduced the need for

car ownership as users can borrow a car when it is needed (on-demand) in a convenient (payment

using a smart phone application) and cost effective way (by-the-minute payment, no worries for

parking fee). Car sharing systems also have a great potential to contribute to the environment

and sustainability thanks to its positive aspects such as reducing pollution and mitigating traffic

congestion. Recently, a one-way car sharing system has gained a surge of interest as it provides

enhanced mobility and flexibility by allowing users to have flexible return times and stations. There

are, however, management issues arising with the successful launch of one-way car sharing systems,

one of which is the inventory imbalance problem caused by spatially dispersed, asymmetric return

demands that are different than pick-up locations. The question is then how to effectively manage

the system inventory balance, such that users can pick up a vehicle from a location of preference at

a desired time and return it to a drop-off location close to a final destination when they want to

return.

In light of the aforementioned discussions, of our interest is to consider an electric vehicle for car

sharing systems as a reasonable means to foster the introduction of electric vehicles and to promote

car sharing systems at the same time. We claim that the combination of the two, i.e., electric vehicle

sharing systems have a great potential to further promote environmental sustainability, even though

this may pose new challenges such as limited driving range and battery recharging issues in the

context of vehicle sharing. Indeed, several electric vehicle sharing systems and services have been

developed and introduced in some countries, and it is expected that electric vehicle sharing systems

will continue to grow all around the world.

In this paper, we tackle the problem of rebalancing the inventory of one-way electric vehicle

sharing systems by proposing a novel dynamic pricing approach. We propose a model that helps

establish a self-balancing inventory system through dynamic pricing for which a system operator

proposes to incoming users a better price if they choose an alternative combination of pick-up and
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drop-off stations that will improve the system inventory balance. A sophisticated pricing mechanism

is presented and the inventory matrix that allows flexible return times and stations is developed for

the implementation of the proposed model. The inventory matrix is updated dynamically every

time a reservation is made and a vehicle return occurs. Note that unlike the conventional car

sharing systems, for electric vehicles there is a gap between the time of vehicle return and the

time at which the vehicle becomes available for the next user. This requirement is explicitly taken

into account in the inventory matrix. We compare the proposed dynamic pricing approach with

a staff-based rebalancing method with a focus on the total cost for rebalancing. In addition, we

design a stop-over station recommendation system that will allow trips longer than the range of

electric vehicles, which we call minimum stop-over path cover (MSPC) problem. Furthermore, we

present computationally tractable algorithms to implement the proposed model, which is a requisite

for implementing dynamic pricing and stop-over station recommendation system.

We consider two approaches for rebalancing the system inventory. The first approach is to

use a dynamic pricing method in an attempt to minimize the number of imbalance stations over

the course of the planning horizon. We assume that a system operator obtains information on

pick-up and drop-off stations and rental duration when a reservation is made or when an on-demand

pick-up occurs. That is, while the electric vehicle sharing system allows on-demand pick-ups, a

trip information is required before a user can actually pick-up a vehicle and start a trip. Based on

this assumption, we propose a model that helps establish a self-balancing inventory system. If the

drop-off station (for the case of on-demand pick-ups) or the pair of pick-up and drop-off stations

(for the case of reservations made in advance) make the system inventory more imbalanced, then

the operator can suggest nearby stations at a better price, which will improve the system inventory

balance. We also assume that users always seek the most economical ways, such that they will

choose the alternative stations if the total cost including the traveling cost from original stations to

nearby stations is lower than the one between original stations.

Even though the proposed dynamic pricing approach is designed to establish a self-balancing

inventory system, there is still a chance that imbalanced stations will remain at the end of the

planning horizon. The second approach is to use staff members to relocate vehicles at the end of the

planning horizon, thereby providing all balanced stations before the beginning of the next planning

horizon, while providing vehicle rental prices proportional to the rental duration. We compare these
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two approaches in terms of the number of imbalanced stations at the end of the planning horizon

and the total cost to make the system inventory balanced for the next planning horizon through

several examples.

We provide 3 examples to show how our proposed models can be used in electric vehicle sharing

problems. In particular, example 1 is used to show the relatively small area with 50 randomly

generated EV stations. Example 2 is used to show the relatively large area with 100 randomly

generated EV stations. Example 3 is used to simulate the distribution of zipcar stations in New

York City. We consider three cases in example 1. We evaluate each example with six performance

measures: (1) number of imbalanced stations at the end of planning horizon, (2) percentage of

imbalanced stations, (3) total staff travel distance, (4) total number of unserved customers, and

(5) total cost. From the results, we conclude that the dynamic pricing method has a significant

potential to improve the service level by reducing the potential number of unserved customers and

by reducing the total cost. There are several extensions possible in the future work, examples

of which include customers’ willingness to use alternative stations depending on the distance to

neighborhood stations and monetary compensation.
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Extended Abstract

Motivation

The advancement of mobile Internet technologies have led to the birth of ride-sharing platforms such as

Uber and Lyft and their Chinese counterpart Didi. These ride-sharing platforms link consumers and drivers

in an efficient and real-time way through mobile applications. The dynamics of both demand (consumers)

and supply (drivers) on ride-sharing platforms are distinctively different from the ones in traditional taxi

industry. Through ride-sharing mobile applications, consumers can choose a range of car services and can

instantly review the number and locations of nearby active cars in real time, and make decisions based

on up-to-date information about availability and pick up times. On the supply side, the capacity or the

number of active drivers is not centrally controlled by the ride-sharing platforms. Instead, the number of

drivers that are working at a specific time is indirectly determined by the independent choices of individual

drivers.

Given these unique market dynamics, ride-sharing platforms often set prices dynamically to balance

the demand and supply for their services. Fare setting rules and proprietary algorithms used by these

services for managing their operations play an important role in value generation for their customers as
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well as their drivers, and important questions center around their pricing and regulation. In this paper, we

develop an empirical model, and analyze price formation and surplus generation of these services using a

comprehensive dataset obtained from Didi, the largest ride-sharing platform in China (with a market share

of more than 90%), who provides taxi as well as ride-sharing services (known as Kuaiche) on its platform

while dynamically setting the prices to better match the supply with the demand. The particular research

questions we study are

1- What are the factors that determine the consumer demand and driver willingness to participate in

ride-sharing platforms?

2- What are the welfare effects of certain proposed government regulations on pricing and capacity of

ride-sharing services?

Empirical Model and Estimation

We first develop an empirical model to capture the demand and supply dynamics on a ride-sharing platform

like Didi. We apply a discrete choice model to describe both customers’ choices among different services and

drivers’ choices on whether to drive at a given time. On the demand side, when a consumer is looking for

a service on Didi’s platform, the consumer needs to select a service/option j ∈ {K,T,O} where K denotes

Kuaiche, T the Taxi and O the outside option such as taking public transportation. Let A denote the

consumer (demand) side and B denote the driver (supply) side of Didi’s platform. Following a multinomial

logit choice model framework, at any time t, consumer i’s utility function of choosing Kuaiche can be

written as

uKA
it = µKA + αKANKB

it + βKApKA
it + γKwK

it + δKADt + ξKA
t + ϵKA

it , (1)

where µKA denotes the fixed effect of Kuaiche on Didi platform on the consumer side; NKB
it be the number

of available Kuaiche drivers consumer i observes at time t; pKA
it is the total price for consumer i’s trip by

Kuaiche at time t. wK
it is the waiting time for consumer i’s order to be taken by a Kuaiche driver at time

t. ξKA
t and ϵKA

it are random effects of the Kuaiche service faced by consumers where ϵKA
it follows an i.i.d.

Gumbel distribution for each i at time t. Dt is a vector of control variables including day dummies, highest

and lowest temperatures, weather and air quality. Consumer i’s utility function of choosing Taxi is given

in a similar form. Consumer i’s utility of choosing the outside option is given as

uOA
it = µOA + ϵOA

it , (2)

where µOA is the fixed effect of the outside option, and ϵOA
it is the random effect of the outside option faced

by consumer i, and have i.i.d. Gumbel distribution at each time t. Without loss of generality, we normalize
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µOA to 0. A consumer will select the option that will generate the highest utility. So, consumer i will

choose service/option j ∈ {K,T,O} at time t, if ujAit > ukAit , for all k ̸= j, and k ∈ {K,T,O}. Given the

utility functions, the market share of service j ∈ {K,T} offered on the platform at time t can be derived

based on the multinomial logit choice probability calculations, which specify the demand dynamics on the

platform.

On the supply side, Didi offers two services: Kuaiche and Taxi. For Kuaiche driver i, we assume that

the utility of driving, i.e., taking Kuaiche orders from the Didi platform, at time t is given as

uKB
it = µKB + αKBNKA

it + βKBpKB
t + γKvKit + δKBDt + ξKB

t + ϵKB
it , (3)

where µKB denotes the fixed effect of Kuaiche service on the platform in the driver’s side; NKA
it be the

number of Kuaiche orders submitted on the Didi platform around driver i’s location at time t; pKB
t is the

expected payoff Kuaiche drivers receive on a trip at time t; vKit is the cumulative money Kuaiche drivers

has earned up to time t in a particular day. Dt is the vector of control variables. ξKB
t and ϵKB

it are random

effects of driving Kuaiche, and ϵKB
it have i.i.d. Gumbel distribution. If a Kuaiche driver decides not to

drive at time t, the driver can take the outside option. We use superscript OK to denote the not driving or

outside option for Kuaiche drivers. For Kuaiche driver i, we assume that the utility of not driving at time

t is

uOKB
it = µOKB + ϵOKB

it , (4)

where µOKB is the fixed effect of not driving for a Kuaiche driver, and ϵOKB
it is the random effect of not

driving for Kuaiche driver i which follows an i.i.d. Gumbel distribution at each time t. Without loss of

generality, we normalize µOKB to 0. Based on the utitlity functions, the proportion of registered Kuaiche

drivers that decide to drive at time t can be derived, again through multinomial logit choice probability

calculations, specifying the supply dynamics of Kuaiche drivers on the platform. Taxi drivers’ participation

decisions are modeled in a similar way.

Based on the empirical model of demand and supply on the platform, we then estimate the model

parameters using three datasets, two from Didi and one from public sources, to conduct the empirical

analysis. The first dataset we obtained from Didi contains transaction level data in Beijing including

observations on the locations at which each customer is picked up and dropped off, the time the customer

submits a request through the mobile app and the time the driver accepts the request, the drop-off time,

and the total fare of the ride. The second dataset from Didi contains the driver’s information. Finally, we

also employ an independent public data to control for other factors such as the weather variation during

the timespan of the Didi dataset.

Performing the estimation, we find that price has different effects on consumers’ choices of Kuaiche in
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different time periods in a day. It has a significantly negative effect on consumer’s choice of Kuaiche during

the night time, i.e., 11 pm-6 am, while its effect is not significant during morning rush hour from 7 to 9 am.

The after-dinner period, from 8-11 pm, also demonstrate lack of consumer sensitivity to the price. This can

be explained from two aspects, namely reduced availability of transportation choices in the evening, and

consumers’ higher valuation of convenience and comfort.

On the supply side, Kuaiche drivers’ choices of whether to drive or not depend on the observable param-

eters like the number of open orders around, current estimated price per order as well as how much money

the driver has made so far in a day. The number of consumers is always a positive incentive for Kuaiche

drivers in all time periods. The price effect, however, is negative and significant in 11 pm-6 am, 6-7 am

and 9-10 am and positive in other time periods. This can be explained by drivers’ target-driven behavior.

Drivers care less about the price during the morning rush hour since the number of orders is the dominating

consideration given the higher congestion level. Taxi market share is affected by the number of available

taxi drivers positively for all time periods. Price per order for taxi service is negative or insignificant with

its market share for all time periods except the night time. Limited public transportation forces consumers

to take taxi during night time even if the night price is higher.

Counterfactual Analysis on Government Regulation and Welfare

We then utilize our estimation results on the demand and supply dynamics to investigate the impact of

potential government regulations on pricing and capacity through counterfactual analysis. Governments

around the globe are often concerned about the lack of regulations in ride-sharing industry. Based on

concerns that existing taxi companies may get severely affected by the low base price and the large number

of Kuaiche drivers of Didi, and that customers may suffer from the surge price, in China there are proposed

regulations commonly focusing on enforcing constraints on pricing and limiting the number of Kuaiche

drivers in a city. To evaluate the impact of government regulations on ride-sharing platforms, we estimate

both consumer and driver welfare through log-sum method, and evaluate the difference between the current

levels and scenarios that assume the implementation of price caps and capacity limitations on Kuaiche

service.

We first examine the impact of price caps imposed by a regulator on Kuaiche prices based on taxi prices.

Under the proposed price caps, Kuaiche prices cannot be lower than taxi prices at a specific time. With

other model parameters remaining the same, we solve the nonlinear equation system estimated to study

the dynamics of Kuaiche and taxi drivers’ responses to the pricing regulation on Kuaiche in different time

periods. We find that when the price for Kuaiche is regulated to be no lower than that of taxi, the customer

welfare will decrease in both weekdays and weekends with an average reduction of 61.31%. The decrease
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comes from the interaction of various connected factors. First the the increase of price reduces consumer’s

welfare directly. The drop of consumer orders taking Kuaiche afterwards further decreases consumer welfare

because Kuaiche drivers’ willingness to drive is also negatively affected. As a result, although a group of

consumers may benefit from shorter waiting times due to larger decrease of consumers requesting Kuaiche

than the number of available Kuaiche drivers, price regulation dramatically decreases consumer welfare as

a whole. What is more, the increased price leads to a 5.31% decrease in total Kuaiche driver welfare.

We find that taxi drivers that participate in the platform do not benefit from the price caps on Kuaiche

either, with an average welfare loss of 20.12%. There are two reasons for this unexpected observation. First,

although the Kuaiche prices are regulated to be no less than taxi prices, many Kuaiche customers would

likely respond by taking choose an outside transportation option. This, creates an imbalance in favor of

supply for the Kuaiche service, which results in relatively less waiting times for Kuaiche, and attracts some

taxi consumers to switch to Kuaiche. Therefore, a demand reduction occurs in the taxi market, which

reduces the surplus of the taxi drivers that offer services on Didi’s platform.

We then analyze the effects of potential capacity regulation on Kuaiche by considering the proposed

scenario of limiting the number of Kuaiche drivers from the current 95,000 to the current number of taxi

cabs, 66,000 in Beijing. Performing the analysis, we can observe a significant decrease of 50.06% in total

consumer welfare and a decrease of 56.35% in Kuaiche driver welfare under this scenario. We find that

the shortage of Kuaiche capacity is likely decrease consumers’ willingness to choose the Didi platform and

further jeopardize Kuaiche drivers’ incentives to participate because of the decreased number of orders.

However, our analysis shows that taxi drivers would also experience a loss of surplus in this case, and the

joint effect of the changes of consumers and drivers due to capacity regulation causes various degrees of

losses to all participants on the platform.

Our results suggest that common government regulations on pricing and capacity of ride-sharing plat-

forms could perform poorly in enhancing the social welfare and balancing demand and supply in the market.

Hence, more careful design of regulating mechanisms is needed to improve the efficiency and social benefits

of ride-sharing platforms.
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Abstract

We consider allocating a carshare fleet to service zones under uncertain one-way and round-
trip demand. We use a two-stage stochastic integer program, where in the first stage, we allocate
shared vehicle fleet and purchase parking lots or permits; in the second stage, we generate finite
samples to represent uncertain location-time-based carshare demand and construct a spatial-
temporal network for each sample to model vehicle movement. We minimize the expected total
costs minus profit, and develop branch-and-cut algorithms with mixed-integer rounding (MIR)-
enhanced Benders cuts. We also implement the two-stage model in a rolling-horizon fashion
for real-time vehicle relocation. We test instances generated based on Zipcar data in Boston to
demonstrate the efficacy of our approaches and draw insights on carshare management.

1 Introduction

Increasing energy prices and parking fees in large cities have led to increased vehicle ownership
costs, resulting in many individuals turning to other means of transportation. In recent years,
carsharing has become a popular means of alternative transportation, serving as a middle ground
between public transport and private ownership. Carshare systems can be broadly categorized into
two types: reservation-based, in which customers must reserve vehicles prior to using them (e.g.,
Zipcar), and free-float, in which customers can pick up any available car for immediate use (e.g.,
Car2Go). Carshare rentals can be categorized into one-way and round-trip rentals, with the former
allowing customers to rent and return vehicles in different locations, and the latter only allows
returning cars to the same location.

From the customers’ point of view, the availability of one-way rentals provides two main benefits.
Firstly, there can be more flexibility in vehicle use. Secondly, customers can potentially save on
rental fees by splitting a round-trip rental into two one-way rentals. From the point of view of a
carshare company, providing such a service has not been a priority because of added management
complexities, among which, the most significant one is planning for imbalances in demand, e.g., via
vehicle relocation, which can be costly.

1.1 Problem Description and Solution Approaches

In this paper, we consider allocating a carshare fleet in a region serviced by a carshare company
to satisfy uncertain travel demand. The region is discretized into smaller zones, with parking costs
different from zone to zone. To regulate carshares, city governments issue parking lot contracts and
free-float parking permits for shared cars. We are tasked to allocate a homogeneous fleet of vehicles
to zones, by determining the number of contracted parking lots (for reservation-based systems) or
the number of parking permits (for free-float systems) to purchase in each zone.

The above car fleet allocation decisions are made “here-and-now” before one-way and round-
trip demand is realized at discrete time periods over a finite horizon. In each period, should the
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demand in a zone exceeds the number of vehicles available for use at that zone, any excess demand
is immediately lost (i.e., we assume that any excess demand is not carried over to the next period).
During the finite horizon, we may relocate vehicles as recourse actions, and customers will be unable
to use vehicles that are being relocated. Given each demand realization, we find the optimal vehicle
movement to maximize the net profit minus the penalty of undesirable QoS results associated with
unserved demand.

1.2 Contribution and Main Results

This paper focuses on a strategic planning problem of purchasing parking lots/permits and allo-
cating initial vehicle fleet in service zones, to satisfy uncertain one-way and round-trip carshare
demand. We optimize both profitability (given by carshare revenue minus the relocation cost)
and QoS (determined by unserved demand, total vehicle idleness, and denied demand trips). We
formulate a two-stage stochastic programming model with integer variables in the first stage, while
using spatial-temporal networks to model vehicle movement corresponding to different demand
realizations in the second stage.

We conduct a numerical study using augmented real-world data, to demonstrate the effectiveness
of stochastic optimization approaches for carshare management under uncertainty. Our results
show that the proportion of one-way rentals can significantly impact the profitability and QoS of
carshare systems. However, the specific impact can be completely different depending on whether
one-way demand is exogenously or endogenously generated. If the proportion of one-way demand
is exogenously given, we show that higher one-way proportion can increase a carshare system’s
profitability. On the other hand, if the proportion of one-way demand is endogenously determined
by pricing and strategic customer behavior, we show that higher one-way proportion could decrease
a carshare system’s profitability. When one-way demand is exogenous, increasing the proportion of
one-way demand will first cause QoS measures (e.g., unserved demand and denied trips) to worsen.
However, as the proportion further increases, the QoS measures will improve. When one-way
demand is endogenous, increasing the proportion of one-way demand always leads to improvements
of the QoS. Furthermore, the effective use of vehicle relocation plays an important role in carshare
systems with one-way demand. The number of vehicle relocations will increase as one-way demand
increases. The reservation-based system with limited parking spaces has higher cost of vehicle
relocation but lower cost of parking compared to the free-float system that uses parking permits.

2 Problem Formulation

Consider the problem where a carshare company needs to allocate a given budget of S vehicles in
a set of zones, denoted I, to maximize its profit and QoS over T time periods, using contracted
parking lots (for a reservation-based system, denoted by m = 1) and purchased parking permits (for
a free-float system, denoted by m = 2). Decisions include the number of parking lots to purchase
in zone i, denoted wi, the number of vehicles deployed in zone i that require contracted parking
spaces, denoted x1

i , and the number of vehicles allocated in zone i with purchased parking permits,
denoted x2

i , for all i ∈ I. Let clot
i be the cost of acquiring one parking space, cloc

i be the cost of
allocating a vehicle in zone i, for all i ∈ I, and cffp be the cost of one free-float parking permit.
We denote the demand for one-way rentals from zone i to zone j starting at period t and ending
at period s by done

ijts, and denote the demand for round-trip rentals from zone i starting at period t
and ending at period s by dtwo

its . The time taken to travel from zone i to zone j is denoted `ij , and
the data satisfies s− t ≥ `ij for any done

ijts > 0. We denote the revenue per period per vehicle from
one-way rentals by rone ≥ 0 and that from round-trip rentals by rtwo ≥ 0; the relocation cost per
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period per vehicle is crel ≥ 0. When a vehicle is in use, whether during one-way rentals, round-trip
rentals, or relocation, it incurs a maintenance cost of cmnt ≥ 0 per period; when it is not in use, it
incurs an idle cost of cidle ≥ 0 per period.

To model zone-to-zone vehicle movement over T periods, we construct a spatial-temporal net-
work G(N,A), with each node nit ∈ N representing a zone i ∈ I at period t ∈ {0, 1, . . . , T}. The
set A is the union of four types of arcs, namely, one-way, round-trip, relocation, and idle arcs, i.e.,
A = Aone ∪ Atwo ∪ Arel ∪ Aidle. We denote the unit cost of flow and the capacity of arc a by fa
and ua, respectively, while δ+(nit) and δ−(nit) denote the sets of arcs for which nit is their origin
and destination node, respectively. The unit flow costs and capacities of each type of arcs are
summarized in Table 1.

Table 1: Unit flow costs and capacities for each arc type

Type of arc Cost per unit flow fa Capacity ua
One-way arc (nit, njs) −(rone − cmnt)(s− t) doneijts

Round-trip arc (nit, nis) −(rtwo − cmnt)(s− t) dtwo
its

Relocation arc (nit, nj,t+`ij ) (crel + cmnt)`ij +∞
Idle arc (nit, ni,t+1) cidle wi (m = 1); +∞ (m = 2)

2.1 A Two-Stage Stochastic Integer Programming Formulation

We employ a two-stage stochastic program, where w ∈ Z|I|+ denotes the vector of wi’s, and xm ∈ Z|I|+

denotes the vector of xmi ’s with m = 1, 2. Moreover, let c1
i = cloc

i , c2
i = cffp + cloc

i , for each zone
i ∈ I, and M = {1, 2}. We formulate the carshare fleet allocation problem as

min
w,x1,x2

∑
i∈I

(
clot
i wi +

∑
m∈M

cmi x
m
i

)
+Q(w,x1,x2) (1)

s.t. (w,x1,x2) ∈ X =

{
w,x1,x2 ∈ Z|I|+ :

∑
i∈I

∑
m∈M

xmi ≤ S, x1
i ≤ wi, ∀i ∈ I

}
. (2)

The function Q(w,x1,x2) returns the optimal cost in the second stage, which optimizes flows in
the spatial-temporal network given that the supply level at each node ni0 is xi and the capacity
on each arc a is ua determined by the random demand and the number of parking spaces wi, for
all i ∈ I. We define recourse decisions yma , a ∈ A, m ∈M , to represent reservation-based (m = 1)
and free-float (m = 2) vehicle movements in the spatial-temporal network. The feasible region of
shared vehicle movement is given by Y (w,x1,x2,u), consisting of constraints in the corresponding
multi-commodity flow problem, with two commodities m = 1, 2.

In this paper, we employ Monte Carlo sampling to generate a finite number of demand scenarios
from a joint distribution of one-way and round-trip rentals. We index the scenarios by k ∈ K,
denote the vector of capacities of the arcs in scenario k by uk = [uka, a ∈ Aone ∪ Atwo]T, and the
probability of occurrence of scenario k by pk. For the objective, we minimize the expected cost of
scenario-based vehicle movements yk = [ykma , m ∈M, a ∈ A]T, k ∈ K, plus some random penalty
incurred from unserved demands. Thus,

Q(w,x1,x2) = min
y1,...,y|K|

∑
k∈K

pk
∑
a∈A

fa
∑
m∈M

ykma +
∑
k∈K

pk
∑

a∈Aone∪Atwo

Ga(uka −
∑
m∈M

ykma ) (3)

s.t. yk ∈ Y (w,x1,x2,uk) ∀k ∈ K. (4)

The first term in the objective function (3) denotes the expected cost of vehicle traveling, idleness,
and relocation, while the second denotes the penalty incurred in all the scenarios.
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2.2 Rolling-Horizon Model for Vehicle Relocation

For ease of exposition, we consider the reservation-based system, i.e., M = {1}. Let s ∈ {1, 2, · · · , T−
1} denote the current time period. A spatial-temporal network, denoted G(Vs, As), is constructed
in the same way as before, except that it only includes periods s+ 1, . . . , T and that w and x1 are
now fixed (obtained in period 0). Let vis be the number of currently idle vehicles in zone i, and vit
the number of vehicles that are currently rented out, but will be returned to zone i at time t > s.
We define decision variables zij as the number of vehicles that start being relocated from zone i to

zone j in the current period. Recall that `ij is the time for relocating a vehicle from i to j. Let crel
ij

denote the cost of relocating a vehicle from i to j. For ease of exposition, let zii denote the number
of vehicles that remain idle in zone i, with `ii = 1 and crel

ii = cidle. Let J(i, t) = {j ∈ I : `ji = t},
i.e., the set of zones from which it takes t periods to relocate a vehicle to zone i. The rest of the
notation follows those previously defined. We present the vehicle relocation problem in period s as

min
z

∑
i∈I

∑
j∈J

crelij zij +
∑
k∈K

pkQk(z) (5)

s.t.
∑
j∈J

zij = vis, zii ≤ wi, ∀i ∈ I (6)

zij ∈ Z+, ∀i, j ∈ I (7)

Let Is(t) = 1 if t = s and Is(t) = 0 if t 6= s. For each k ∈ K, the second-stage cost Qk(z) in (5) can
be specified as

Qk(z) = min
y

∑
a∈As

faya +
∑

a∈Aone
s ∪Atwo

s

Ga(uka − ya) (8)

s.t.
∑

a∈δ+(nit)

ya −
∑

a∈δ−(nit)

ya = vit +
∑

j∈J(i,t−s)

zji − IT (t)x1i , ∀(i, t) ∈ Vs (9)

0 ≤ ya ≤ uka, ∀a ∈ As. (10)

The one-time relocation model can be applied as follows. First, we solve for a daily initial
vehicle assignment plan. Then, every period, e.g., an hour, we fulfill demand as much as possible.
At the end of the period, we use the one-time relocation model to optimize vehicle relocation. This
process continues until period T when the system restores initial vehicle allocation for the next day.

2.3 Mixed-Integer Rounding (MIR)-Enhanced Benders Decomposition

We develop a branch-and-cut algorithm with cuts enhanced by mixed-integer rounding (MIR) [1].
The basic procedure branches on the integer variables and solves individual nodes via Benders
decomposition [2]; the Benders cuts at each node are added to the master problems of subsequent
nodes, which, however, could be weak due to the relaxed integer constraints in the first-stage. Thus,
we apply MIR to pairs of previously generated Benders cuts to obtain stronger valid cuts.

3 Numerical Results

We test instances generated based on Zipcar’s rental data collected from the Boston-Cambridge
area and conduct computational studies to demonstrate the results of our approach. The data
set is from Oct 1 to Dec 1, 2014, containing the information of the starting-ending time, and the
zipcodes of the origin and destination zones of each rental. In our sampling-based method, we
generate one-way and round-trip rentals for T = 24 peirods using Gamma distributions (validated
by Kolmogorov-Smirnov test) with means and variances equal to the empirical means and variances
of the Zipcar data. The cost/revenue parameters are set according to real practice.
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We first study the impact of other important factors such as the size of available fleet, and the
penalty cost of lost demand, shown in Figure 1. Then, we analyze how one-way and round-trip de-
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Figure 1: The impact of fleet size and penalty factor on some system performance measures

mand proportions affect solution profitability and QoS, given fixed prices used in practice, and also
examine the profitability and QoS results corresponding to different one-way proportions, endoge-
nously generated based on varying one-way rental prices. In these two cases, a higher proportion
of one-way demand may have opposite effects. Thus, understanding the market dynamics of one-
way rentals is of great importance for carshare companies as well as local governments that try
to solve their urban transportation problems by promoting carsharing. Finally, we illustrate how
to implement our two-stage model for dynamic vehicle relocation, and demonstrate the efficacy of
MIR-enhanced Benders cuts implemented in parallel, which outperforms the traditional Benders.
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1 Introduction

Mobility-on-demand (MoD) services have the potential for transporting passengers be-

tween locations efficiently and reliably, providing a service comparable to a private car,

while removing many of the more burdensome aspects of ownership, e.g., maintenance

and parking. Moreover, by collectively time-sharing use of the fleet, significant fixed costs

are distributed over a large user base, drastically reducing the cost to access mobility.

Although vehicle sharing services offer a number of benefits, they are plagued by the in-

efficiency of needing to rebalance empty vehicles to ensure the supply of vehicles remains

aligned with the demand for transport. Rebalancing has the unfortunate side-effect of

increasing the total vehicle mileage driven throughout the system, which raises concerns

about worsening congestion on city streets. Recognizing that many vehicles can carry

two or more passengers, one way to curb this effect is to incorporate ridesharing and per-

mit vehicles to transport multiple passengers simultaneously. Services such as UberPool,

Lyftline, and Via speak to, relatively recent, commercial interest in building a carsharing

platform capable of leveraging the efficiency gains of ridesharing.

Despite progress in resolving the core issues of carsharing and ridesharing indepen-
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dently, the associated results rarely extend to services that fuse carsharing and ridesharing

functionality. For example, much of the ridesharing literature (see Agatz et al. (2012) for a

detailed taxonomy) does not apply to carsharing systems because it assumes a private ve-

hicle ownership model or ignores the issue of how to rebalance empty vehicles, Santi et al.

(2014). Similarly, much of the carsharing work, while accounting for rebalancing Spieser

et al. (2014, 2016), assumes unit capacity vehicles1. As an alternative, software solutions

that exploit ridesharing opportunities with real-time requests are discussed in Ma et al.

(2013). There, a heuristic quality of service rule is used to match and route up to thou-

sands of vehicles that are viable candidates sharing a ride. Throughout, we tacitly assume

a door-to-door MoD service does not require riders to switch between vehicles.

This work makes an initial contribution to the space by considering a MoD system, in

which a shared fleet of vehicles, each capable of carrying two passengers at a time2, is used

to transport passengers. Inherent to the formulation are two important attributes: (i)

the need to rebalance empty vehicles and (ii) the ability to identify lucrative ridesharing

corridors by means of trip chaining. Note that although the later functionality is essential

to capture ridesharing in its most general form, it is absent from the majority of existing

works that, for a variety of reasons, limit the extent to which rides may be shared. We

present a mixed-integer linear programming (MILP) formulation of the problem and show

how an heuristic (feasible) solution to the problem can be obtained in polynomial-time

by independently solving the ride-matching and rebalancing problems. This approximate

solution can be used as a intial guess when solving the coupled problem via a MILP solver.

Numerical results based on the NYC Yellow Taxi dataset show a performance improvement

over the work presented in Santi et al. (2014).

2 A Steady-State Model of Ridesharing in MoD Systems

Although the ridesharing problem is inherently dynamic in nature, we focus on the case

of steady-state demands for clarity and conciseness. The results are readily extensible to

the dynamic ridesharing problem with an appropriate time expansion of the variables.

The MoD system is described by a network G = (V,E) of fully connected stations.

The time required to travel from station i to j is Tij > 0 and represents the shortest

physical path between the stations. Passengers enter and exit the system at stations, and

are transported between stations by a fleet of m self-driving vehicles. Each vehicle is able

to transport up to two passengers at a time. Passengers that enter a vehicle may depart

the vehicle only upon reaching their destination, preventing transfers which are a known

1There is a large literature on these topics that we have not references to in this abstract due to space

limitations.
2The model can be extended to the case of carrying more passengers, with the number of variables in

the optimization problem increasing by a factor of N (the number of stations) per increase in occupancy.



deterrent to the adoption of transit systems (Guo and Wilson, 2011)3. Vehicles traveling

with zero, one, or two passengers are referred to as empty or rebalancing, single-occupancy,

and dual-occupancy vehicles, respectively. Single occupancy vehicles may be diverted to

pickup a second passenger. We wish to find the optimal vehicle and passenger flows along

each ij ∈ E for different optimality criteria.

We begin by defining the following variables. xki is the flow rate of empty vehicles

traveling from node i to node k 6= i. yki is the rate of single-occupancy vehicles transporting

a passenger from node i to the passenger’s destination node k 6= i. ỹjki is the rate of single

occupancy vehicles en-route from i to j with a passenger destined for k. zk,k
′

i (t) is the rate

of dual-occupancy vehicles traveling from node i to node k, with one passenger destined

for node k 6= i, and the other passenger destined for node k′ 6= i4. λki is the rate at which

passengers arrive at node i destined for node k. The set {λki : i, k 6= i ∈ V } is referred to

as the travel demand at time t.

Steady state equations. In steady state, neither passengers nor vehicles accumulate

within the system. Consequently, for each node i, the rate at which vehicles enter i must

equal the rate at which vehicles leave i,∑
j∈V \i

(
xij + yij +

∑
k∈V \j

(zikj + ỹikj )
)

=
∑
j∈V \i

(
xji + yji +

∑
k∈V \i

(zjki + ỹjki )
)
∀i ∈ V. (1)

Similarly, for each node i, the passengers entering the system, exiting the system, and

just passing through must be conserved,

λki +
∑
j∈V \i

(zikj + ỹikj ) = yki +
∑

j∈V \{i,k}

ỹjki +
∑

k′∈V \{i,k}

(
zkk

′
i + zk

′k
i

)
+ 2zkki ∀i ∈ V, k ∈ V \ i. (2)

Finally, as per our earlier restriction, we do not want passengers to be transferred while

en-route. With κ =
∑

j∈V \i
(zikj + ỹikj ), this is ensured via the following constraint

zkki ≤

κ+ 1
2(λki − κ) , if λki ≥ κ

λki , otherwise
, ∀i ∈ V, k ∈ V \ i. (3)

If λki ≥ κ, then zkki is maximized when as many of the λki demands get paired with

the incoming passengers heading to k and the remaining λki − κ share rides in pairs. If

λki < κ, then at most λki vehicles will have two passengers heading to k. Conveniently, (3)

may be written as the following pair of inequalities:

zkki ≤ λki , zkki ≤
λki
2

+
1

2
κ. (4)

3This restriction is added to make the system more practically applicable and can be easily removed.
4Note that k = k′ is allowed, corresponding to both passengers traveling to the same destination.



Because the number of flows originating from i, i.e., xki , yki , ỹjki , and zjki , scales as

O(N +N +N2), where |V | = N , the total number of variables scales as O(N3). However,

in practice, it is likely that many zjki are zero, and that therefore we achieve more favorable

scaling5.

(a) (b)

(c) (d)

Figure 1: Numerical results for different on-demand taxi models (rb = rebalancing): -

(a) The number of customer walkaways as a function of fleet size. A walkaway occurs

when a customer is not services within 6 minutes, (b) Vehicle utilization (average number

of passengers) as a function of fleet size, (c) Total shared (2-pooled) miles traveled, and

(d) Total miles traveled. The coupled optimization minimized the total number of miles

traveled and shows that this is achieved without maximizing the number of shared trips.

3 Optimal ridesharing for stationary demands

In the steady-state setting, efficient ridesharing amounts to finding vehicles flows that

satisfy (1)–(3) and optimize a sensible performance metric.

A major advantage of ride-sharing is the ability to reduce the fleet size, m, required

to service a certain volume of users (assuming users are willing to share). However, there

5For example, zjki = 0 when i is in Midtown Manhattan, j is in the Bronx, and k is in Lower Manhattan.



remains a fundamental tradeoff between m and the average time a customer is in transit.

An overly aggressive approach to ride-sharing may cause passengers to spend exorbitantly

long en-route to their destination. Conversely, customer travel-times can be minimized

by assigning each passenger a vehicle. The system operator is responsible for finding the

routing policy and fleet size that provides a high quality at a reasonable operational cost.

This problem results in a MILP when using a linear performance metric. Given recent

advances in commercial solvers medium scale problems can be directly solved using the

MILP formulation. However, for larger problems, this approach may not be feasible.

For such cases, we propose solving the matching and rebalancing problems separately as

described in (Santi et al., 2014; Pavone et al., 2012) and using the resulting approximate

solution as a feasible starting point for a MILP solver. The solver can then be run for a

fixed time duration to improve the quality of the polynomial time approximation. Initial

numerical evaluations based on the NYC Yellow Taxi dataset provide promising early

results (see Figure 1), which we are currently expanding on.
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Car-sharing has become a popular transportation mode in urban areas in the past decades. It has been
deployed in about 1,100 cities in 26 nations, with at least 31,665 vehicles and 1,251,504 members in 2010
worldwide (Shaheen and Cohen, 2013). Certain studies indicate that car-sharing can reduce greenhouse
gas emissions and the vehicle miles traveled, thereby benefiting both the environment and traffic congestion
(Martin et al., 2010; Martin and Shaheen, 2011). Car-sharing can be viewed as a supplement to public
transportation service in urban areas. It can be used to solve the first-mile or the last-mile problem.

Two-way car-sharing service, which requires customers to return the car to the same place where they picked
it up, is one of the most common forms in today’s car-sharing market. In different places in a city, a car-
sharing company rents several parking spaces and assigns its fleet to these spaces. It is important for the
car-sharing company to decide where to rent the spaces and how many spaces to rent in each area of the
city for a certain period of time. From the company’s perspective, we are looking to design a system to
increase its profit; from the public perspective, we would like to design a system such that residents can
have close access (from their home or workplace) to either a car-sharing station, a bike-sharing station, or
a public transit stop. The goal of this work is to design a car-sharing network to complement the other
existing mobility services (bike-sharing and transit).

In this work, we propose a simulation-based optimization (SO) metamodel algorithm to assign a two-way car-
sharing fleet. We use a simulator that samples from real data from a car-sharing company. We evaluate the
performance of our proposed algorithm with a Boston case study. We compare its performance to analytical
optimization algorithms, and to traditional discrete simulation-based optimization methods. In the following
section, we first discuss our motivations. Then we present our methodology, including the simulator and the
metamodel SO algorithm. At the end of this abstract, we will briefly describe the experiments carried out
to validate the algorithm.

1 Motivation

To use a two-way car-sharing service, a user should first find a suitable car-sharing station and reserve an
available car in advance. For the reservation, the user needs to specify the pick-up time and how many hours
he wants to use this car. At the reservation start time, the user should go to the location, use the car and
return the car to the same place on time. If the user finds that the cars at the desired location are not
available for the desired using period, he can choose another start location, change start time, change service
length, or choose not to make a reservation. This procedure can be described as “first-come-first-reserve”.

∗tzhou90@mit.edu
†osorioc@mit.edu
‡efields@mit.edu
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Car-sharing companies may keep a record of each reservation, including the reservation booking time, car
pick-up location, reservation start time, booked length, and actual return time. Sometimes they also record
each change made by the user to a reservation.

To find good fleet assigning strategy, the most common method is using mixed integer programming (MIP)
models to approximate the operation of a car-sharing system. Chen (2016) proposed a two-stage stochastic
programming model to decide how to allocate a two-way car-sharing fleet and how many free-float fleet
parking permits to purchase. That work featured a case study that divided the study area into 9 smaller
regions, each of which corresponds to two first-stage decision variables. The second-stage problem of this
study contains 100 demand scenarios. Boyacı et al. (2015) proposed a multi-objective MIP model to plan
a one-way electric vehicle-sharing system. The case study in that work contains 210 regions. The demand
was assumed to be fixed. By considering a vehicle-sharing system as a supplement of public transportation,
Nair and Miller-Hooks (2014) used an MIP model to determine the location and capacity of vehicle-sharing
stations so it could be better connected to an existing transit network. This study also assumed fixed
demand. OMahony (2015) used a continuous-time Markov process to model a bike-sharing system. The
author developed a very fast greedy algorithm to solve the problem to optimality. Detailed review about
vehicle-sharing systems can be found in Jorge and Correia (2013) and Brandstätter et al. (2016).

In our case, we consider the uncertainty of reservation’s pick-up location, start time and length. The ana-
lytical MIP formulation of our considered problem leads to a high-dimensional problem. Another approach
is to model the interactions between demand and supply with a stochastic simulator. There is currently a
lack of efficient SO algorithms for high-dimensional discrete problems. Industrial Strength COMPASS (ISC)
becomes slow when problem dimension becomes larger than 10 (Xu et al., 2010). Adaptive Hyperbox Algo-
rithm (AHA) has higher efficiency than COMPASS, and ISC-AHA (AHA combined with ISC) can handle
problems with 100 discrete decision variables (Xu et al., 2013). Wang et al. (2013) proposed R-SPLINE, a
method using the idea of “phantom gradients”. It converges to a local optimal solution faster than AHA
in some examples with less than 20 decision variables. According to the authors, R-SPLINE is better at
finding good solutions locally than globally, while ISC and ISC-AHA have a global phase before searching for
local optimal solution. A more detailed recent review of discrete SO algorithms can be found in Hong et al.
(2015). This paper proposes a discrete SO algorithm suitable to address the high-dimensional car-sharing
fleet assignment problem.

2 Problem Description

Assume that a city can be divided into smaller pieces, each piece is called a cell. Also, assume that each cell
will generate customer demand for the two-way car-sharing service. Some cells are candidate locations for
car-sharing stations.

We have developed a data-driven microscopic simulator for a two-way car-sharing system based on real
data from a car-sharing company. Given the total demand (reservation-hours wanted) of each cell and the
number of cars assigned to each cell, the simulator samples empirical reservations from the data and assigns
a reservation to a selected station. If no car is available at the desired cell and time, the simulator will assign
this reservation to a nearby cell, give it a different start time, or reject this reservation. This simulator has
been validated using the data from the car-sharing company.

The simulator can be used to evaluate various objective functions. In this work, we want to maximize the
profit of the company.
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Important notations to describe the fleet assignment problem are as follows:

I set of all customer generating cell;
I∗ set of cells that have other modes available, and I∗ ⊆ I;
Ii set of cells that is considered “near” the cell i ∈ I;
N i capacity of cell i ∈ I;
X total number of cars the company can assign;
xi decision variable, number of cars we put at the station in cell i ∈ I.

The feasible region of the fleet assignment problem is defined as follows:∑
i∈I

xi ≤ X, (1)

xi ≤ N i, ∀i ∈ I, (2)∑
j∈Ii

xj ≥ 1, ∀i ∈ I \ I∗, (3)

xi ∈ Z+, ∀i ∈ I. (4)

Equation (1) means that the total number of cars that can be assigned should be smaller than the upper
bound. Equation (2) means that the number of cars at each station should be smaller than the capacity of
that station. Equation (3) says that for each cell, there must be at least one car nearby, if there is no transit
(train or key bus route) stops or bike sharing stations nearby. This requirement is aimed at ensuring that
residents of the city have access to at least one of the following services: car sharing, bike sharing, train and
key bus route. Equations (1) to (4) specify the feasible region of this problem. For the rest of this abstract,
we use F to denote the feasible region.

3 Methodology

We propose to use a metamodel SO method to solve this problem. Computationally efficient metamodel
formulations for continuous SO problems have been proposed in Osorio and Nanduri (2015a), Osorio and
Nanduri (2015b), Osorio and Chong (2015) and Osorio and Selvam (Forthcoming), which stems from the
general metamodel idea of Osorio and Bierlaire (2013). Here we formulate metamodel ideas for discrete SO
problems. This is the first algorithm that is designed to be efficient for discrete SO transportation problems
(i.e., coming up with good solutions with few simulation evaluations). To achieve this, this paper formulates
an analytical approximation of the simulation-based objective function. This approximation is then used as
part of a metamodel (as in Osorio and Bierlaire (2013)), and is embedded within a general purpose discrete
SO algorithm.

The metamodel is an analytical approximation of the objective function - profit. Important notations for
the metamodel are

L set of all possible reservation lengths;
T set of possible service start times, T = {1, 2, . . . , tmax};
rl revenue for the company brought by a reservation with length l;
ci cost of having a space in cell i over the planing period, including space

renting fee and other costs;
ditl number of customers who are from cell i ∈ I and want to start service

with length l ∈ L at time t ∈ T , estimated by using simulator.

We have two types of auxiliary variables:

zitl number of customers whose start time is t ∈ T , service length is l ∈ L
and will actually be served by the station in cell i ∈ I;

zjitl number of customers from cell j ∈ I, with start time t ∈ T and service
length l ∈ L and will actually be served by a nearby station i ∈ Ij

3



The objective of the problem is to maximize the profit of the company. For the metamodel, the analytical
approximation of the simulation-based objective function has the following form:

T (x) =
∑
i∈I

∑
t∈T

∑
l∈L

rlz
i
tl −

∑
i∈I

cixi, (5)

which equals the total revenue minus the total cost.

We use the following constraints to describe the system:∑
j∈Ii

zjitl = zitl, ∀i ∈ I,∀t ∈ T ,∀l ∈ L, (6)

∑
j∈Ii

zijtl ≤ ditl, ∀i ∈ I,∀t ∈ T ,∀l ∈ L, (7)

∑
l∈L

zitl +
∑
l∈L

∑
t′∈T1(t,l)

zit′l ≤ xi, ∀i ∈ I,∀t ∈ T , (8)

x ∈ F , (9)

zitl ∈ R+, ∀i ∈ I,∀t ∈ T ,∀l ∈ L, (10)

zijtl ∈ R+, ∀i ∈ I,∀j ∈ Ii,∀t ∈ T ,∀l ∈ L, (11)

where T1(t, l) = {t′ ∈ T : t′ + 1 ≤ t ≤ t′ + l− 1} is the set of service start time points for services that start
before t and have not finished at t for a given service length value l. Equations (6) and (7) are customer flow
conservation constraints. Equation (8) ensures that at each station, the sum of the number of cars that are
being used at this time point and the number of cars that will start to be used at this time point is smaller
than the number of cars that belong to the station. Equation (9) states that the fleet assignment should be
feasible. This analytical model is a simplification of the simulator. For instance, it differs from the simulator
in that it does not enforce the first-come-first-reserve rule. It also does not allow customers to change the
start time or the duration of their reservation. These simplifications are made such as to have a tractable
analytical model, which will be then embedded within the SO algorithm as part of a metamodel.

We embed the proposed metamodel formulation within an existing discrete SO algorithm. We use the
ISC-AHA of Xu et al. (2013).

We evaluate the performance of our proposed algorithm with both a toy case study and a Boston case study.
We compare its performance to analytical optimization algorithms, and to traditional discrete simulation-
based optimization. We compare the algorithms both in terms of the quality of their proposed solutions and
their computational efficiency. This is part of ongoing research. The most recent results will be presented
at the conference.
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Vickrey’s bottleneck model is a classical model used to study morning commute problem. Since 
the model can be investigated analytically, it has been used to study implications of transportation 
policies, such as congestion pricing, tradable mobility credits, flexible work schedule, parking 
management, and variable speed limit. 

In the Vickrey model, a fixed number (denoted by N) of commuters go from home to work 
through a road with a potential bottleneck. Once the bottleneck is activated, a queue will emerge and, 
thus, commuters incur a queuing delay. Commuters also incur an early/late cost if they arrive at work 
earlier/later than desired arrival times. The cost of a commuter is calculated by 

         max 0, * max 0, *c t T t t t T t t T t t         . (1) 

Here T(t) is the travel time for a departure time t, t* is preferred arrival time, α is the value of unit 
travel time, and β and γ are the schedule penalties for a unit time of early arrival and late arrival 
respectively. As usual, we assume that γ>α>β>0. Each individual chooses departure time to minimize 
his/her commute cost that combines queuing delay and early/late cost, and a unique user equilibrium 
(UE) state can be achieved.  

In the tolled highways, usually more tollgates will be activated to alleviate traffic congestion in 
rush hours. Via considering a queue-length-dependent bottleneck capacity, this paper extends Vickrey 
model to depict the situation. It is shown that diverse situations can be identified. In particular, 
multiple user equilibrium states and oscillation of queue length have been observed. 

In our model, bottleneck capacity is assumed to increase from s1 to s2 as the queue length 
exceeds a threshold D1, and decreases back to s1 as the queue length reduces and becomes smaller 
than another threshold D2 < D1.  

Other symbols used are listed as follows 
   Symbols definition 

kD kD= D1/D2 >1 
ks ks=s2/s1 >1 
δ δ=βγ/(β+γ) 
tq The earliest departure time  
tq' The latest departure time  
t1 The time that the queue length increases to D1 
t2 The time that the queue length decreases to D2 (t2> t1) 

1t  The departure time corresponding to arrival time t1 

2t  The departure time corresponding to arrival time  t2 

t  The departure time corresponding to arrival time t* 
 

Firstly, we consider the situation that capacity does not change or changes (defined as increasing 
to s2 and backing to s1) only once. Under this situation, three scenarios are classified. 

Scenario (I): D sk k
 



  

In this scenario, three UE states can be observed, as shown in Fig.1. In case 1, bottleneck 
capacity does not change. The model thus reduces to a standard Vickrey model. The cost function is  

 1
1

N
p N

s
 ,  (2) 

and this case can be observed if 1N D



 .In case 2, bottleneck capacity changes. The cost function 
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is
 
 

   1
2 min

2 2

D
p N N N

s s

    , (3) 

 and this case can be observed if minN N  . Here 

min 1 2

1s
D s

s

k
N D k k D

k

    
  

   
   

 
 . (4) 

Case 3 can be observed if  sk
 



  and min max N N N   . Here 

 max 1 2

1s
D s

s

k
N D k k D

k

  
 


   . (5)

 
The cost function is  

   1
3 min

2 1

D
p N N N

s s

    .  (6) 
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Fig. 1. Cost function in the three cases in scenario (I) 

 

Scenario (II): s D sk k k
   
 
 

   

In this scenario, case 1 can also be observed as in Scenario (I). However, when 2N YD , a 

different case 4 can be observed, and the cost function is  

   1 2
4 2

2 1 2

D D
p N N YD

s s s

   
 

 
    

 
,  (7) 

Here  

D
D

s

k
Y k

k

   
 
 

   , (8)

  If 
2sk

 
 





 and N  is between N  and 2YD , another different case 5 can be observed, and 

the cost function is 

    1 2
5 2

2 1 1
2

1

s

s

k
D D

p N N YD
s s s k


        

 


         



.  (9) 

Here 
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2

2 1 s D

s
s

k k
N Y D

k k


     

  
 

            
  

 . (10) 

Note that when 
1 2

sk

 
 





, 2N YD (Fig.2a-c); when 1
2sk

 
 


 


, 2N YD (Fig.2d). Also 

note that the slope of the cost function in case 5 could be positive (Fig.2a and d), negative (Fig.2c) or 
equal zero (Fig.2b). The negative and zero slope is counterintuitive, in which increasing the total 
number of commuters does not change or even decreases the average cost of each commuter.  
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In the special case 
2sk

 
 





, 2N YD . Under the circumstance, if 2N YD , case 5’ can be 

observed in which there exist infinite UE solutions. Let us introduce 1 2t t t    , then the cost 

function is 

   1 2
5

2 1

1
1

s

D D
p t t

s s k

     
    

              
, (11) 

where max0 t t    , and  
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2
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1
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t
sk


   


 


  




,  (12) 

see Fig.3(a). Fig.3(b) shows three different UE solutions. One can see that the departure curve is the 
same for 2t t   and the arrival curve is the same for 2t t .  
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Fig.3. (a) Cost function in the three cases 1, 4, 5’ in scenario (II); (b) Three different UE solutions in 
case 5’. 
 

Scenario (III): D sk k
 



  

In this scenario, apart from case 1, there are five different cases. The existence condition and the 
cost function of Case 6-9 are listed below in Table 1, where  

1 s DY Y k k
  
 

    
 

, (13) 

 2

2 1 s D

s
s

k k
Y Y

k k


     

  
 


        



, (14) 

and 1 2Y Y  always holds. Fig.4 shows the cost function of case 1 and case 6-9.  

 
Table 1 The existence condition and the cost function of Case 6-9 
Case  existence condition cost function 
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Fig.4. Cost function in case 1 and case 6-9 in scenario (III). (a) 
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; (b) 
1 2
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Similar to scenario (II), in the special case 
2sk

 
 





, 2 2N Y D . Under the circumstance, if 

N=Y2D2, case 7’ can be observed in which there exist infinite UE solutions.  
 

Capacity changes more than once 

 
Fully discussing the situation that capacity changes more than one time is very complex. As an 

example, Fig.5 shows an equilibrium solution in which 
2 3 2
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D
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. In the example, capacity changes twice. 

Oscillation of queue length has been observed. 
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Fig.5. An example that capacity changes twice.  



Modelling user behaviour at a stochastic

bottleneck

D. van Leeuwen, CWI, The Netherlands, D.vanleeuwen@cwi.nl
P.M. van de Ven, CWI, The Netherlands, ven@cwi.nl

December 9, 2016

1 Introduction

Bottlenecks are common in road traffic networks: Due to high fluctuations in
travel demand over time and space, capacities at parts of the network are tem-
porarily exceeded, resulting in congestion. Predictions on daily arrival patterns
are used to forecast the delays in the near-future. Often, these methods are
deterministic and only consider average delay. However, traffic congestion is a
non-stationary process which is predictable to a certain degree. Variations in
capacity and demand often lead to unpredictable delays. A better understand-
ing of these bottlenecks and user behaviour is the first step towards designing
better road networks.

A well-known model capturing travel delay and user behaviour at a bottleneck is
due to [1], later adjusted by [2]. In this deterministic setting the Wardrop equi-
librium can be computed, yielding an arrival curve into this queue such that all
travellers encounter the same costs and no traveller can decrease his/her costs
by altering their departure time. This bottleneck model and its variants have
been studied extensively in econometric and transportation literature, for exam-
ples see [2][3]. Although these fluid queues are mathematically tractable, they
may not provide an accurate representation for the behaviour at a bottleneck,
in particular for local roads where a bottleneck would be comprised of relatively
few travellers.

To study the effects of variability, we extend this model using the formulation
of [2]. In this extension we model the arrivals and departures in the system
by a stochastic process. In this model we compute the arrival and departure
rates with the same input parameters and approximate the equilibrium for the
stochastic model. We also determine the difference in costs if we would use the
original deterministic bottleneck models output values and show the effects for
our extended model including stochastics in arrival and departure. Finally, we
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quantify the impact in time-dependent arrival rate, given that we quantify the
costs of uncertainty.

It is worth pointing out that this work is part of a larger trend towards mod-
elling uncertainty by using the bottleneck model. Some researchers argue that
variability is of great importance to understand user behaviour. For example
Noland (1996) points out: ”The inability to accurately predict travel times
may be more costly to travellers than the extra travel time due to congested
traffic” [4]. However, most variants of the fluid bottleneck model that include
stochasticity effects make use of exogenous variability. Such as in [5] and [6],
where a probability of extra travel time due to an incident creates variability.
In our study we investigate the impact of endogenous effects, where we include
the stochasticity effects of arrival behaviour.

2 Model

We consider a queueing model with discrete customers for which we determine
the arrival rate given Poisson distributed arrival instant and exponentially dis-
tributed service durations, to more accurately capture the arrival pattern at a
bottleneck. In particular, we model this bottleneck by a transient analysis of
the Mt/M/1 queue, and aim to quantify and correct for the error made by the
deterministic bottleneck model. More specifically, we show that the impact is
large for small number of travellers N , while for N → ∞ the stochastic model
tends to the solution of the original model.

The original model in [2] considers a single bottleneck queue where travellers
are modelled as a fluid. The total amount of fluid is denoted by N and the
capacity of the bottleneck by s, the duration of the bottleneck period [ta, tb] is
fixed and is given by N/s. All travellers want to depart from the bottleneck at
the same time denoted by t∗. By means of a cost function, the discomfort of
travellers departing from this queue is captured, in the simplest form, costs are
equal for all travellers. This cost function of the fluid model is defined by to the
following function

c(t) = αw(t) + β max{0, t∗ − t− w(t)}+ γ max{0, t+ w(t)− t∗} (1)

where w(t) is the waiting time when a traveller arrives at time t at the bot-
tleneck, α gives the costs for waiting, β the costs for arriving earlier and γ for
departing later than the desired time. Costs are given per unit of time.

The cost function for the stochastic model is identical to that of the deterministic
model, with the delay w(t) replaced by its stochastic counterpart W (t). To
compute the impact of stochasticity over time for an arbitrary day, we compute
the expected costs

EC(t) = αEW (t) + βE[(t∗ − t−W (t))] + γE[(t+W (t)− t∗)] (2)

2



In the stochastic model travellers divide themselves over time such that on
average they encounter the same costs. To determine the difference in impact for
traveller with large discomfort compared to small discomfort due to uncertainty,
we can include a cost parameter for uncertainty. We define this by

EC(t) = αEW (t) + βE[(t∗ − t−W (t))] + γE[(t+W (t)− t∗)] + δV ar[W (t)],

(3)

where δ gives the costs per unit of time due to uncertainty.

3 Analysis

We numerically compute the waiting time distribution by discretising t into
small time steps of length ∆, where ∆ is small, to approximate this cost function.
This gives

EC(t) ≈ C̃(t) =α

∞∑
τ=0

τ ∗ f(τ ; t) + β

(t∗−t)/∆∑
τ=0

(t∗ − t− τ) ∗ f(τ ; t)

+ γ

∞∑
τ=t∗−t

(t+ τ − t∗) ∗ f(τ ; t)

(4)

where f(τ ; t) =
∑N
n=0 πn(t) ∗ gn(τ) represents the density function gn(τ) of the

sojourn time τ conditioned on the queue length πn(t) at time t for n travellers
at the bottleneck.

4 Results

Input fluid model Output fluid model
N s t∗ α β γ r1 r2 tn Eq. Cost Timespan [ta, tb]

600 10 480 2 1 4 20 3.33 240 480 [0,600]

Table 1: Input/ output parameters for the deterministic bottleneck.

To analyse the impact of stochasticity in this bottleneck model we first com-
pute the Wardrop equilibrium of the fluid queue as explained in ??. We use a
numerical example with parameter values of Table 1. The resulting equilibrium
arrival rate, cost, time span and peak moment tn are shown as well. We use the
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Figure 1: Cost and arrival rate function for the deterministic model and the
approximated stochastic model with parameter set 1.

resulting arrival curve to evaluate the costs in the equivalent Mt/M/1 queue.
The arrival curve is a piecewise linear function given by

λt =


0 t ∈ (−∞, ta)
r1 t ∈ [ta, tn)
r2 t ∈ [tn, tb)
0 t ∈ [tb,∞)

. (5)

where [ta, tb] gives the duration of the bottleneck period.

Figure 1a demonstrates that the error this (expected) costs incur vary notably
between travellers, in particular putting travellers arriving towards the end of
the busy period in a disadvantageous position. The large increase in costs just
before the peak moment is due to the costs of late arrival which are not en-
countered the deterministic model. At the end of the bottleneck period there
is a fair chance that the queue did not disappear at time tb. Using this as a
starting point, we then attempt to numerically repair this cost imbalance by
adapting the arrival rate function. This means that we set the equilibrium cost
function cf (t) ≡ C obtained from the fluid model and use this to compute the
corresponding arrival rate of our stochastic model by

cf (t) ≈ EC(t) = αEw(t) + βE[(t∗ − t− w(t))] + γE[(t+ w(t)− t∗)]. (6)

The resulting time-dependent arrival rate can be seen in Figure 1b together
with the rate of the original fluid model for comparison. This shows that the
clear cut that is obtained for the deterministic model behaves more fluently over
time. The smaller the total amount of travellers N , the smoother this function
will become.

Having obtained an approximation of the equilibrium in the stochastic model
allows us to investigate the uncertainty by plotting the mean against the stan-
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Figure 2: Mean queue length and St.dev. over time.

dard deviation over time shown in Figure 2. We can see that the standard
deviation increases when the congestion increases at the bottleneck, however,
when the congestion decreases, the standard deviation decreases more slowly.
This indicates that uncertainty at the end of the bottleneck period has a larger
impact than at the beginning. Similar results where shown by Fosgerau in [7] in
which he refers to this as a looping phenomenon which has also been observed
in empirical data. In this study we continue our analysis by adding an extra
cost parameter to the stochastic model. This research is still in progress.
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1. Introduction 

With the rapid development of wireless communication, sensing and computing techniques, it has become a common vision 

that connected and automated vehicles (CAV) will soon go beyond testbeds to appear on roads with traditional (i.e., human-

driven) vehicles at large scale. In the meantime, it is also envisioned that we will live in an era with both CAVs and 

traditional vehicles for a long time before CAVs completely replace traditional vehicles. CAVs will undoubtedly bring new 

potential of improving the automation level at intersections however the co-existence of CAVs and traditional vehicles in 

the real world makes it challenging to describe the dynamic interaction between heterogeneous vehicle movements and 

signal operations and then further develop systematic intersection automation policies (IAP) benefiting both CAVs and 

traditional vehicles. Within the heterogeneous traffic environment, CAVs are viewed as a player with dual roles at 

intersections: (a) a part of traffic flow and interact with traditional vehicles and (b) identities sending green requests to 

intersection(s). The CAV’s first role (as vehicles) is explicitly separated from the second (as green request senders). 

Furthermore, we view the urban traffic dynamics as a sequential decision process or SDP. Traffic vehicle locations or states 

at time 𝑡 are the direct results of traffic signal operations from time 0 to time 𝑡. On the other hand, traffic signal operations 

from 𝑡 to the future also needs to consider both current and future traffic states according to their inherent traffic vehicular 

dynamics. As such the target problem modeling and solution algorithms developed in this paper aim to fully capture the 

nature of sequential decision process through coupling heterogeneous traffic and traffic signal operations.  

Extended from the notations due to Karp and Held (1967), traffic propagation over time can be represented by a 

quintuple ℕ = (𝐴, 𝑅, 𝑟0, 𝑟𝑇 , 𝛤), where ℕ is the subject traffic system; 𝐴 is the set of time-dependent inputs such as traffic 

lights; 𝑅 is the set of all feasible traffic states including vehicles’ locations, traffic signal status and the set of served green 

requests; 𝑟0 represents the initial state; 𝑟𝑇 represents the final traffic state and 𝛤 is the state transition function. In addition, 

it is also necessary to define 𝜌, an input data set for SDP including the link travel times, saturation flow rates, etc. and two 

conceptual functions:  

1. State transition function ℎ: 𝑅 × 𝐴 × 𝑃 → ℎ. For a given data set 𝜌 ∈ 𝑃, 𝑎 ∈ 𝐴, quantity of ℎ(𝑟, 𝑎) gives the cost of 

transiting from the initial state 𝑟 to an updated traffic state 𝑟′ = 𝛤(𝑟, 𝑎)  due to 𝑎, where 𝛤 is the traffic state 

transition function. Function ℎ is critical in traffic signal modeling and optimization because it is necessary to 

evaluate the traffic state evolution as well as incurring costs under a possible traffic operation during the 

optimization. As examples, in addition to signal phasing transition rules, state transition function ℎ  is most 

commonly defined based on cumulative vehicle counting curves in which traffic signal operations change the 

departure curve (the “D curve”) and control delays (Daganzo, 1997). ℎ is also defined as changes to arterial “green 

band” under traffic signal timings at intersections in a mixed-integer linear programming (MILP) form in the 

literature due to Little et al.(1981) and Gartner et al. (1991); defined as the changes to queue length and delay 

changes at intersections under a traffic signal operation by Mirchandani and Head (2001); defined as traffic 

dynamics changes under given traffic signal operations in the cell transmission model (CTM) developed by 

Daganzo (1994) in the literature due to Lin and Wang (2004) and Lo (1999); as the propagation of vehicles stored 

on links by Aboudalas  et al. (2009);  as the propagation of traffic shockwaves by Wu and Liu (2011) and as 

changes to vehicle routing plan in the literature due to Li et al. (2015).  

2. Cost function 𝑘: 𝑃 × 𝑅 → 𝑘, for a given data 𝜌 ∈ 𝑃, quantity of 𝑘(𝑟) gives the cost of traffic state 𝑟 ∈ 𝑅.  

Based on the concept of SDP, the intersection automation policy optimization can be defined as follows: construct an 

algorithm which schedules the traffic signal operations during the time horizon 𝑇, given the (prior known) data set 𝜌 so as 

to make ℕ reach a feasible final state 𝑞𝑇 at the minimum cost. In particular, within the heterogeneous traffic environment, 

a traffic state 𝑟 contains two groups of objects: CAV requests for green and traffic dynamics comprised of all vehicles. The 

CAV requests can be represented in a form like “Request green on movement X at 𝑡” while all vehicle locations on roads 

are governed by traffic dynamics defined in 𝑅 and 𝛤.  

2 Construct Phase-Time-Traffic (PTR) hypernetwork to model heterogeneous traffic propagation under various 

intersection automation policies 
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With the SDP modeling framework, the challenge is that elements including traffic signal operations, heterogeneous traffic 

propagation as well as CAV schedules all involve additional hard constraints. The complex interactions between those 

elements makes it nearly impossible to solve the problem efficiently with mathematical-programming-based solvers. To 

address these issues, we develop a new phase-time-traffic hypernetwork model, referred to as PTR hypernetwork, to “pre-

build” most hard constraints and complex interactions among heterogeneous traffic, traffic signal operations and CAV 

requests into the PTR hypernetwork itself to ensure the traffic dynamics feasibility and signal transition feasibility during 

the sequential traffic decision progress. 

Traffic signal operation representation: three items are necessary to define a complete traffic signal control strategy at 

intersections: signal phases, phasing sequence and respective phase durations. The first two items can be well represented 

in the classic state-transition diagram but it cannot reflect the phase durations. To address this issue, Li et al. (2015) 

developed the phase-time network model or PT network model to reflect all three items in an acyclic, discrete and forward 

network. Each arc in the PT network is interpreted as one feasible traffic signal operation. Without loss of generality, we 

assume the minimum time step is 1s.  

1 2

Phase 1 Phase 2
Signal Phases

Phase

t

Z

1 2 3 4 5 6 7 8 Time

1

2

A feasible signal Timing 

Signal Phasing Diagram

Phase-time Network

a

b

Super sink 

node

 
Figure 1 Demonstration of traffic signal operations in phase-time network  

(min green=2 s; max green=3s; adapted from Li et al. (2015) ) 

Seeking the optimal traffic signal timing in the phase-time network is in essence to seek the shortest path from the start PT 

node (current signal phase at current time) to the end PT node (the virtual sink node after the time horizon). All hard 

constraints for traffic signal control systems, including the minimum and maximum green requirements on each phase, 

mutual exclusiveness of incompatible phases and cyclic or flexible phasing sequences, can be “prebuilt” into the PT network.        

CAV request for green with time window representation: One feature of CAVs is that they move along the scheduled 

routes and their arriving times at downstream intersections can be predicted. Therefore, it is possible for CAVs to send 

green requests in terms of time windows to several intersections in advance. All PT-arcs able to serve a CAV request can 

be divided into two types: admissible PT arcs to a CAV request turning the corresponding phase to green during the time 

window; “early-green” PT arcs of this CAV request to start the green early and hold until the CAV request’s time window 

starts. Mathematically they are defined as below:  

Denote a CAV request on phase 𝑝 with a time window as (𝑝, 𝑡), 𝑡1 ≤ 𝑡 ≤ 𝑡2,𝑡1, 𝑡2 are boundaries of this request’s time 

window. Then a PT arc 𝑙1 is an “admissible PT arc” to this CAV request if 𝑙1 = (𝑝′, 𝑡′, 𝑝, 𝑡) where 𝑝′ ≠ 𝑝; a PT arc 𝑙2 

is an “early-green” PT arc of this CAV request if 𝑙2 = (𝑝, 𝑡′, 𝑝, 𝑡′′) where 𝑡′ < 𝑡1 𝑎𝑛𝑑 𝑡′′ > 𝑡1 

 

Two types of PT arcs are illustrated in Fig. 2 and both of them are superimposed with additional large negative cost – 𝜆 as 

the incentive for search algorithms to select those arcs while searching a least-cost path in the phase-time network. The 

second restriction is introduced to ensure one and only one PT arc, which is either the “admissible” PT arc to or the “early-

green” PT arc of a given CAV request, is selected.  

1
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4

Admissible PT arcs to a CAV request (on phase 2) with time 

window, namely  admissible PT arcs 

A CAV request on phase 2 time window from t1 to t2

(2,t1)
(2,t2)

Early green (phase 2) and hold until the time window, namely 

 early-green PT arcs 

 
Figure 2 illustration of modified phase-time network model to accommodate future green requests 

Please note that if multiple CAV requests on the same phase with overlapping time windows and some PT arcs happen to 

be able to serve multiple CAV requests, those PT arcs will be superimposed with multiple – 𝜆 values to reflect a preference 
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of using one green phase to service multiple green requests. Fig. 3 shows this concept. Accordingly, the search algorithm 

will favor those overlapping PT arcs with multiple negative λs more in seeking least-cost paths.  

1

2

Z

phase

t

3

4

Part of Admissible arcs to a green request with additional 

-λ   arc cost 

A green request time window

(2,t1) (2,t2)

Admissible arcs to both green requests with additional -

2λ  arc cost  
Figure 3 PT arc costs for multiple green request with overlapping time windows 

Heterogeneous traffic propagation under traffic signal operations in phase-time-traffic (PTR) hypernetwork: Fig. 4 

illustrates the concept of the new PTR hypernetwork in which all vehicles, including CAVs and traditional vehicles, are 

released into the space-time plane and propagate. Interactions between vehicles and traffic signal operations can 

significantly affect vehicle trajectories. Constructing a PTR hypernetwork starts from a two-dimension PT network model. 

Each PT arc can be expanded to a series of three-dimension PTR edges along the traffic dimension. As an illustration, 

assuming there are only two traffic conditions whose indices are 𝑟1, 𝑟2 in Fig. 4. A two-dimension PT arc (dash arrow line) 

can be expanded to a series of three-dimension PTR edges (solid arrow line) according to feasible traffic state transitions. 

Since a traffic state index uniquely maps a traffic state, we use “traffic state” to refer to the traffic dimension in the rest of 

this paper unless confusion is caused. 
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t

t

Vehicle location in space-time network

t

Traffic state at t, represented by two 

vehicles  locations and indexed by r2

 
Figure 4 illustration of the PTR hypernetwork concept 

3. Mixed-integer linear programming (MILP) formulation for IAP optimization in the PTR hypernetwork 

The problem is described in a multi-commodity formulation: 

Minimize 𝑃 = ∑ (𝑐(𝑝,𝑡,𝑟,𝑝′,𝑡′,𝑟′) − 𝑁(𝑝,𝑡,𝑟,𝑝′,𝑡′,𝑟′) × 𝜆) 𝑦(𝑝,𝑡,𝑟,𝑝′,𝑡′,𝑟′)(𝑝,𝑡,𝑟,𝑝′,𝑡′,𝑟′)∈𝐸     (1) 

Where 𝑝, 𝑝′ are phase numbers, 𝑡, 𝑡′ are time indices and 𝑟, 𝑟′ are traffic state indices 

Subject to:  

Flow conservation constraints at origin vertex 

∑ 𝑦(𝑜,0,𝑟0,𝑝′,𝑡′,𝑟′)(𝑜,0,𝑟0,𝑝′,𝑡′,𝑟′)∈𝐸 = 1        ∀(𝑝′, 𝑡′, 𝑟′) ∈ 𝑉     (2) 

Flow conservation constraints at destination vertex 

∑ 𝑦(𝑝,𝑡,𝑟,𝑧,𝑇,𝑟′)(𝑝,𝑡,𝑟,𝑧,𝑇,𝑟′)∈𝐸 = 1        ∀(𝑝, 𝑡, 𝑟) ∈ (𝑧, 𝑇, 𝑟𝑇)     (3) 

Flow conservation constraints at intermediate vertices 

∑ 𝑦(𝑝,𝑡,𝑟,𝑝′,𝑡′,𝑟′)(𝑝,𝑡,𝑟,𝑝′,𝑡′,𝑟′)∈𝐸 − ∑ 𝑦(𝑝,𝑡,𝑟,𝑝′,𝑡′,𝑟′) = 0 (𝑝,𝑡,𝑟,𝑝′,𝑡′,𝑟′)∈𝐸   

∀(𝑝′, 𝑡′, 𝑟′) ∈ 𝑉\{(𝑜, 0, 𝑟0), (𝑧, 𝑇, 𝑟′), 𝑝 ∈ 𝑅}       (4) 

Multiple services for one CAV request prevention  

∑ 𝑦(𝑝,𝑡,𝑟,𝑝′,𝑡′,𝑟′)(𝑝,𝑡,𝑟,𝑝′,𝑡′,𝑟′)∈𝐸𝑘
= 1; ∀𝑟, 𝑟′ ∈ 𝑅, ∀𝑘 ∈ 𝐾, (𝑝′, 𝑟′) ∈ 𝐸𝑘    (5) 
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Edge costs 𝑐(𝑝,𝑡,𝑟,𝑝′ ,𝑡′,𝑟′) in (1) are not constant but dynamically determined. A traffic state can be simply defined using 

cumulative vehicle counting curves 𝐴𝑚(𝑡), 𝑉𝑚(𝑡), 𝐷𝑚(𝑡)  and the area between 𝑉𝑚(𝑡), 𝐷𝑚(𝑡) or  𝑆(𝑉𝑚(𝑡) , 𝐷𝑚(𝑡)) on all 

approaches. Accordingly, 𝑐(𝑝,𝑡,𝑟,𝑝′ ,𝑡′,𝑟′) can be defined as:      

𝑐(𝑝,𝑡,𝑟,𝑝′ ,𝑡′,𝑟′) = ∑ (𝑆(𝑉𝑚(𝑡′) , 𝐷𝑚(𝑡′)) − 𝑆(𝑉𝑚(𝑡) , 𝐷𝑚(𝑡))) 𝑚∈𝑀     (6) 

4. Sequential branch-and-Bound Search Algorithm in PTR hypernetwork 

A sequential branch-and-bound search algorithm is developed to search the optimal IAP and special pruning (dominance) 

rule is designed for this context.   
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Figure 5 illustration of branching and pruning rules for the BB search algorithm 

5. Experiments and findings 

The subject intersection is Intersection 5 and the baseline Traffic condition is formed after 200 MSA iterations. 
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Figure 6 Configurations of experiment network  

Operational Performance Analysis under the proposed intersection control strategy. Most CAV requests are served and the 

total delay is also lower than the baseline.  
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Rejected CAV 

requests

Red PhaseGreen Time
CAV green 

request

 North Bound South Bound 

 Right Through Left Right Through Left 

New control policy 11.8 8.6 9.6 3.9 4.4 4.2 

Baseline 12.8 9.6 9.8 3.9 4.7 4.9 

 West Bound East Bound 

 Right Through Left Right Through Left 

New control policy 14.4 13.9 13.5 13.4 12.7 11.6 

Baseline 13.5 14.5 16.4 13.2 12.9 11.2 

 

 
Figure 7 CAV green request service rate under the proposed intersection automation policy 

Concluding remarks 

The optimal IAP will serve the CAV requests at its maximum potential and maintain an acceptable traffic mobility. 

Nowadays many special vehicles like fire trucks or buses today already have most CAV features and therefore the proposed 

IAP optimization framework can also be promising to solve special-vehicle-related problems at intersections. 

The IAP optimization framework also has potential for network-wide CAV scheduling as well in the sense that (a) the 

definition of “phases” at intersections can be generalized as a group of “openable simultaneously” movements across 

intersections; (b) all the CAV requests are proactively placed according to their scheduled paths and the proposed IAP 

optimization framework at congested intersections can also suggest certain CAVs to drop their requests and re-schedule 

their paths to avoid congestions. In the future, we plan to combine the proposed IAP with other CAV path scheduling 

policies to ensure the CAV requests not to exceed intersections’ maximal potential. In doing so, it is expected that balanced 

CAV requests can be served at each intersection and so travel time reliability will be greatly improved. We also plan to 

further improve the efficiency of parallel computing in the branch-and-bound search algorithm for large-scale applications.   
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Distributed Computation based Constrained Model Predictive Control for a Mixed Flow Platoon  

Siyuan Gong, Lili Du*1 

 

Extended Abstract 

1. Background and motivation 

It has been shown that improper car-following behavior, e.g., overreacting or timid car-following, is one 

of the key factors to trigger traffic congestion, oscillations (stop-and-go or slow-and-fast traffic), and 

accidents. The connected and autonomous vehicle (CAV) technologies provide tremendous opportunities 

to develop cooperative adaptive cruise control (CACC) technologies, which target cooperative driving 

among vehicles to ensure traffic safety and efficiency. Motivated by this view, extensive interests have 

been attracted from both industry and academia sides and produce numerous control strategies/laws such 

as car-following model based CACC and machine learning based CACC. However, most of existing CACC 

technologies either focus on individual CAVs or a pure CAV platoon. Few studies work on mixed flow 

platoon control which includes CAVs and human-drive vehicles (HDVs). HDVs do not communicate with 

neighborhood vehicles or follow control law, thus they will very likely worsen traffic flow and impair the 

advantages of CACC technologies. Motivated by this view, this research aims to develop a cooperative 

platoon control using model predictive control and distributed computation for a mixed flow platoon, in 

order to improve traffic smoothness, stability, and efficiency of the entire platoon (i.e. system performance). 

 

2. Preliminaries 

0

Successful communication i Autonomous vehicle i i Human driven vehicle i Advanced sensor (radar)

…… 1m…… 1nm+1|A| ……

Leading vehicle
Flow direction

Sharing xi(j) and vi(j), where i=0,…,|A|

 xh(j) and vh(j) can detected by autonomous vehicle,  where  h=1 ,n
The pattern

 
Figure 1. The simple and standard arrangement of a platoon in mixed traffic flow 

To develop rigorous study, this research makes the following agreements/assumptions for a sample platoon 

shown in Figure 1. Specifically, this sample platoon contains a leading vehicle numbered as vehicle 0 with 

unpredictable movement. Then from the downstream to upstream, there are three platoons following this 

leading vehicle. They are respectively a CAV sub-platoon 𝐴1 including m number of CAVs, a HDV sub-

platoon 𝐻 including 𝑛 number of HDVs, and another CAV sub-platoon 𝐴2 including the CAVs from 

𝑚 + 1 to |𝐴|. We define CAV set 𝐴 = 𝐴1 ∪ 𝐴2 and use |𝐴1|, |𝐴2|, and |𝐴| to denote the total number 

of CAVs in the sets of 𝐴1, 𝐴2 and 𝐴, respectively. It is easy to show that repeating this sample platoon 

will produce more general mixed flow platoons. Moreover, we consider a semi-global information structure 

for the development of the control algorithm. Namely, the movement of all CAVs and their adjacent HDVs 

can be detected by on-board sensors and then shared among CAVs in this mixed platoon. In other words, 

we consider that all CAVs are well connected, including CAVs 𝑚 and 𝑚 + 1, even though they are 

spatially separated by some HDVs.   

Built upon the above assumptions, this study seeks to develop a control scheme for this sample mixed 

flow platoon, explicitly putting platoon smoothness and stability under control while still ensuring 

individual vehicles’ mobility. Mainly, the following research challenges will be addressed. First, HDVs 

introduce uncertain responses to traffic variation and unknown platoon length. These issues raise the 

challenges to forecast the movement of HDVs and thus affect the control algorithm design. Second, a 

vehicle platoon is a self-organized system. It may consist of a large number of vehicles and is subject to 

frequent topology variation. To implement such platoon control, centralized computation usually is 

inefficient or infeasible due to the lack of roadside computing facilities except around intersections. This 

challenge calls for the need of distributed computation, which takes advantages of CAV’s local computing 

capability but may introduce extra communication load and challenges of ensuring the convergence. The 

presented research below addresses these challenges with our innovative approaches. 
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3. Methodology 

This section develops the cooperative platoon control using traffic flow theory, model predictive control 

(MPC), machine learning, and optimization techniques. Briefly, we apply the one-step MPC developed in 

[3] for the CAVs in 𝐴1 since the movement of its leading vehicle 0 is unpredictable. Next, we consider 

the first CAV in the platoon 𝐴2 is able to learn and predict the movement of its leading vehicle  (HDV 

𝑛), which is affected by the platoon 𝐴1. Accordingly, a P-step MPC combined with a machine learning 

algorithm is developed to control the car-following movement of the CAVs in the platoon 𝐴2 . The 

cooperative platoon control aims to ensure both transient traffic smoothness and asymptotic traffic stability 

of the collective movement of vehicles in the platoon. The following presents the key technical details of 

our approaches.   

3.1. Vehicle dynamics  

This research studies the vehicle movement at discrete sample times (indexed by 𝑗 = 1, … , 𝐽) with time 

interval ∆𝑡 > 0 . The movements of CAVs and HDVs are modeled by different dynamics models. 

Accordingly, the discrete-time linear model for the longitudinal dynamics of a CAV is given below: 

𝑥𝑖(𝑗 + 1) = 𝑥𝑖(𝑗) + ∆𝑡𝑣𝑖(𝑗) +
∆𝑡2

2
𝑢𝑖(𝑗),         𝑖 ∈ 𝐴 = 𝐴1 ∪ 𝐴2 (1) 

𝑣𝑖(𝑗 + 1) = 𝑣𝑖(𝑗) + ∆𝑡𝑢𝑖(𝑗),                𝑖 ∈ 𝐴 = 𝐴1 ∪ 𝐴2 (2) 

where 𝑥𝑖(𝑗)  and 𝑣𝑖(𝑗)  represent the location and speed of CAV 𝑖  at the time step 𝑗  and 𝑢𝑖(𝑗) 

represents the control variable, which is constant in each interval [𝑗∆𝑡, (𝑗 + 1)∆𝑡]. 
For HDVs, this study only considers the HDVs adjacent to the CAV platoons (such as HDVs 1 and 

𝑛 in Figure 1). By applying the Newell’s car-following model, the movement dynamics of the two HDVs 

are given by the formulations below. 

𝑥1(𝑗∆𝑡 + 𝜏1) = 𝑥𝑚(𝑗) − 𝑑1 (3) 

𝑥𝑛(𝑗∆𝑡 + ∑ 𝜏ℎ
n
ℎ=2 ) = 𝑥1(𝑗) − ∑ 𝑑ℎ

n
ℎ=2   (4) 

where 𝜏ℎ and 𝑑ℎ are the reaction time and the minimum stop distance of human driver ℎ.  

Equations (3) and (4) indicate that the trajectory variation at HDV 1 will propagate to HDV 𝑛 with 

an accumulated delay ∑ 𝜏ℎ
n
ℎ=2 . However, the values of 𝜏ℎ and 𝑑ℎ for ℎ = 1, … , 𝑛 are unknown and 

vary among HDVs. Moreover, it is hard to know the number of the HDVs in-between CAVs 𝑚 and 𝑚 +
1 (i.e., the value of n is unknown). These unknown factors cause the difficulty to estimate the HDV 

dynamics. To address this challenge, this study applies a curve matching algorithm [1], combining the 

online collected trajectory data of CAV 𝑚, HDVs 1 and 𝑛, and the features of the Newell’s car-following 

model. Below briefly introduces this approach. 
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Figure 2. (a) Newell’s car-following model. (b) Basic idea of curving matching. 

According to the Newell’s car-following model, it is recognized that the trajectories of CAV 𝑚, and 

HDVs 1 and 𝑛 follow the same shape but with spatial-temporal delay (see Figure 2(a)). Thus, the curve 

matching algorithm [1] is used to estimate the spatial-temporal delay for the HDVs in real time (i.e. the 

parameters 𝜏1, 𝑑1, ∑ 𝜏ℎ
n
ℎ=2 , and ∑ 𝑑ℎ

n
ℎ=2  in Equations (3) and (4)). We use ℋ1 and 𝒞𝑚 to denote the 

trajectories of HDV 1, and CAV 𝑚, respectively (see Figure 2(b)). The main idea of the curve matching 

algorithm is to iteratively move a trajectory (such as ℋ1) by a motion vector (−𝜏1, 𝑑1) until coinciding 

with the other trajectory (such as 𝒞𝑚). Specifically, the algorithm iteratively matches a point on ℋ1 to 

the closest point on 𝒞𝑚. A least-squares method is used to select the best motion vector (−𝜏1
∗, 𝑑1

∗), which 

minimizes the average distance of all paired points between the two trajectories. This procedure runs 

repeatedly until one trajectory can match the other with acceptable error. The same algorithm is also used 
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to estimate the moving vector (− ∑ 𝜏ℎ
n
ℎ=2 , ∑ 𝑑ℎ

n
ℎ=2 ) by matching the trajectories of the HDV 𝑛 to the 

trajectory of HDV 1, i.e., ℋn  and ℋ1. Once the 𝜏1, 𝑑1, ∑ 𝜏ℎ
n
ℎ=2 , and ∑ 𝑑ℎ

n
ℎ=2  are well estimated for 

the HDVs, we can use Equations (3) and (4) to anticipate the trajectories of HDVs 1 and 𝑛 during time 

intervals [𝑗∆𝑡, (𝑗 + 1)∆𝑡 + 𝜏1) and [𝑗∆𝑡, (𝑗 + 1)∆𝑡 + ∑ 𝜏ℎ
𝑛
ℎ=1 ), respectively. 

3.2. Constrained model predictive control for the mixed platoon 

Recall that this study considers that the mixed flow platoon in Figure 1 includes three sub-platoons: the 

CAV platoon 𝐴1 following the lead vehicle 0, the CAV platoon 𝐴2 and the HDV platoon 𝐻 staying in-

between the two CAV platoons. Accordingly, this research develops two interactive MPCs [2] to regulate 

the movements of CAVs in 𝐴1 and 𝐴2 so that we can improve traffic stability, smoothness, and efficiency 

of the entire mixed flow platoon, while still ensure individual vehicles’ mobility. Below present our 

approaches in details. 

Clearly, the movements of the CAVs in 𝐴1  (CAVs from 1 to 𝑚 in Figure 1) is affected by the 

movement of the leading vehicle 0. Accordingly, we define the control dynamics as follows subject to 

Equations (1) and (2). 

𝑧1(𝑗 + 1) ≔ (𝑥0(𝑗 + 1) − 𝑥1(𝑗 + 1) − 𝑠𝑑, … , 𝑥𝑚−1(𝑗 + 1) − 𝑥𝑚(𝑗 + 1) − 𝑠𝑑)𝑇 ∈ ℝ|𝐴1|  

𝑧1′(𝑗 + 1) ≔ (𝑣0(𝑗 + 1) − 𝑣1(𝑗 + 1), … , 𝑣m−1(𝑗 + 1) − 𝑣𝑚(𝑗 + 1))
𝑇

∈ ℝ|𝐴1|  

Considering the movement of the leading vehicle 0 is unpredictable, this study applies one-step MPC for 

the CAV platoon 𝐴1 with the constrained optimizer given in Equations (5) to (8).   

Optimizer-I  

𝐌𝐢𝐧  Γ1(𝑢(𝑗)): =
1

2
[𝑧𝑇(𝑗 + 1)𝑄𝑧𝑧(𝑗 + 1) + (𝑧′(𝑗 + 1))

𝑇
𝑄𝑧′𝑧′(𝑗 + 1)] +

∆𝑡2

2
‖𝑢𝐼(𝑗)‖2

2  (5) 

subject to:                𝑎𝑚𝑖𝑛,𝑖 ≤ 𝑢𝑖(𝑗) ≤ 𝑎𝑚𝑎𝑥,𝑖,   𝑖 ∈ 𝐴1 (6) 

𝑣𝑚𝑖𝑛 ≤ 𝑣𝑖(𝑗 + 1) ≤ 𝑣𝑚𝑎𝑥,   𝑖 ∈ 𝐴1 (7) 

𝑥𝑖−1(𝑗 + 1) − 𝑥𝑖(𝑗 + 1) ≥ 𝐿𝑖 + 𝑣𝑖(𝑗 + 1) ∆𝑡 −
[𝑣i(𝑗 + 1) − 𝑣𝑚𝑖𝑛]2

2𝑎𝑚𝑖𝑛,𝑖
, 𝑖 ∈ 𝐴1 (8) 

where, the control variables are 𝑢𝐼(𝑗) ≔ (𝑢1(𝑗), … , 𝑢𝑚(𝑗))𝑇 ∈ ℝ𝑛 . Let α ≔ (𝛼1, … , 𝛼𝑚)  and β ≔
(β1, … , β𝑚), where 𝛼𝑖 > 0 and 𝛽𝑖 > 0 are penalty weights for ∀ 𝑖 ∈ 𝐴1, we can define two diagonal 

matrices 𝐷𝛼 = diag(α1, … , α𝑚)  and 𝐷𝛽 = diag(𝛽1, … , 𝛽𝑚) . Then, let 𝑄𝑧 ≔ 𝑅𝑇𝐷𝛼𝑅  and 𝑄𝑧′ ≔

𝑅𝑇𝐷𝛽𝑅  be symmetric and positive definite matrices, where 𝑅  is an orthogonal matrix which 

characterizes the interaction of the CAVs in this platoon through the control. By the matrices 𝑄𝑧 and 𝑄𝑧′, 

the weights α and β will directly affect the eigenvalues of the linear closed-loop system, which makes 

the stability analysis of Optimizer-I much simpler. The constraints contain the acceleration/deceleration 

limit [𝑎𝑚𝑖𝑛,𝑖, 𝑎𝑚𝑎𝑥,𝑖] ∀ 𝑖 ∈ 𝐴1, speed limit [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥], and safety spacing, where 𝑎𝑚𝑖𝑛,𝑖 < 0 < 𝑎𝑚𝑎𝑥,𝑖 

and 𝑣𝑚𝑖𝑛 < 𝑣𝑚𝑎𝑥. 

The objectives in Γ1 are chosen to minimize traffic flow oscillations using a mild control in control 

horizon. Accordingly, Γ1 includes the penalties on three terms: (i) the errors between desired vehicle 

spacing and actual spacing; (ii) the fluctuations of the spacing between adjacent vehicles, i.e., the relative 

speed between adjacent vehicles; and (iii) the variations of individual vehicles’ speed, i.e., vehicles' 

acceleration/deceleration. 

The movements of the CAVs in 𝐴2 (CAVs 𝑖 = 𝑚 + 1, … , |𝐴| in Figure 1) will be affected by the 

movement of HDV 𝑛 (i.e., the leading vehicle of the CAV platoon 𝐴2). It is noticed that the movement 

of the HDV 𝑛 will be influenced by the CAV 𝑚. Recall this study assumes that the CAVs 𝑚 and 𝑚 + 1 

are connected by wireless communication even though they are separated by the HDV platoon. Then, the 

CAV 𝑚 + 1 is able to predict the response of the HDV 𝑛 according to the movement of CAV 𝑚 during 

the time interval [𝑗∆𝑡, (𝑗 + 1)∆𝑡 + ∑ 𝜏h
n
ℎ=1 ) through its vehicle dynamics function in Equation (4) by the 

real-time estimation of 𝜏1, 𝑑1, ∑ 𝜏ℎ
n
ℎ=2 , and ∑ 𝑑ℎ

n
ℎ=2 . Accordingly, this study adopts the P-horizon MPC 

[2] to control the car-following behavior in the CAV platoon 𝐴2, where 𝑃 = 1 + ⌊(∑ 𝜏h
n
ℎ=1 ) ∆𝑡⁄ ⌋.  

Similarly, for a given movement state (𝑥𝑖,𝑗(0), 𝑣𝑖,𝑗(0))
𝑖=𝑚+1

|𝐴|
= (𝑥𝑖(𝑗), 𝑣𝑖(𝑗))𝑖=𝑚+1

|𝐴|
 (i.e. setting the 

initial movement state of P-horizon MPC as the current movement state at time tick 𝑗) and the anticipated 

movement of the HDV 𝑛 (𝑥𝑛,𝑗(𝑝), 𝑣𝑛,𝑗(𝑝))
𝑝=1

𝑃
 at time tick 𝑗, the vehicle dynamics of CAVs in 𝐴2 and 

HDV 𝑛 in future 𝑃 steps at sample point 𝑗 can be anticipated by Equations (9) to (11). 
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𝑥𝑖,𝑗(𝑝) = 𝑥𝑖,𝑗(𝑝 − 1) + ∆𝑡𝑣𝑖,𝑗(𝑝 − 1) +
∆𝑡2

2
𝑢𝑖,𝑗(𝑝 − 1),       𝑖 ∈ 𝐴2, 𝑝 ∈ 𝑃 (9) 

𝑣𝑖,𝑗(𝑝) = 𝑣𝑖,𝑗(𝑝 − 1) + ∆𝑡𝑢𝑖,𝑗(𝑝 − 1),                𝑖 ∈ 𝐴2, 𝑝 ∈ 𝑃 (10) 

𝑥𝑛,𝑗(𝑝) = 𝑥1,𝑗(𝑝∆𝑡 − ∑ 𝜏ℎ
n
ℎ=2 ) − ∑ 𝑑ℎ

n
ℎ=2 ,   𝑝 ∈ 𝑃 (11) 

Then we define the control dynamics as follows subject to Equations (9) to (11). 

𝑧2,𝑗(𝑝) ≔ (𝑥𝑛,𝑗(𝑝) − 𝑥𝑚+1,𝑗(𝑝) −  𝑠𝑑 , … , 𝑥|𝐴|−1,j(𝑝) − 𝑥|𝐴|,𝑗(𝑝) −  𝑠𝑑)
𝑇

∈ ℝ|𝐴2|,  

𝑧2,𝑗′(𝑝) ≔ (𝑣𝑛,𝑗(𝑝) − 𝑣𝑚+1,𝑗(𝑝), … , 𝑣|𝐴|−1,j(𝑝) − 𝑣|𝐴|,𝑗(𝑝)
𝑇

∈ ℝ|𝐴2|  

Next, the optimizer of the P-horizon MPC at each control sample point 𝑗 is given by Equations (12) 

to (16), in which the control variables are 𝒖𝒋 = {𝑢𝑖,𝑗(𝑝 − 1)}
𝑖=𝑚+1,𝑝=1

|𝐴|,𝑃
∈ ℝ𝑃|𝐴2|. In order to keep the 

stability of the P-horizon MPC, we introduce adjusting parameters 𝜑 ≔ (𝜑1, … , 𝜑|𝐴2|), where 𝜑𝑖 > 0 

for 𝑖 = 1, … , |𝐴2|. We can define a diagonal matrix 𝐷𝜑 = diag(𝜑1, … , 𝜑|𝐴2|). Then, let 𝑄𝜑 ≔ 𝑅𝑇𝐷𝜑𝑅 

be a symmetric and positive definite matrix, where 𝑅 is an orthogonal matrix, which formats the 𝑄𝜑 as 

a similar structure to matrices 𝑄𝑧 and 𝑄𝑧′ and helps to simplify the stability analysis of this P-horizon 

MPC. 

Optimizer II  

𝐌𝐢𝐧  Γ2(𝒖𝒋): =
1

2
[𝑧2,𝑗

𝑇(𝑃)𝑄𝑧𝑧2,𝑗(𝑝) + (𝑧2,𝑗′(𝑃))
𝑇

𝑄𝑧′𝑧2,𝑗′(𝑃)]

+ ∑ {
1

2
[𝑧2,𝑗

𝑇(𝑝)(𝑄𝜑𝑄𝑧)𝑧2,𝑗(𝑝) + (𝑧2,𝑗′(𝑝))
𝑇

(𝑄𝜑𝑄𝑧′)𝑧2,𝑗′(𝑝)]}
𝑃−1

𝑝=0
+

∆𝑡2

2
‖𝒖𝒋‖

2

2
 

(12) 

 Subject to: for each 𝑝 = 1, … , 𝑃 

𝑎𝑚𝑖𝑛,𝑖 ≤ 𝑢𝑖,𝑗(𝑝 − 1) ≤ 𝑎𝑚𝑎𝑥,𝑖,    𝑖 ∈ 𝐴2 (13) 

𝑣𝑚𝑖𝑛 ≤ 𝑣𝑖,𝑗(𝑝) ≤ 𝑣𝑚𝑎𝑥,    𝑖 ∈ 𝐴2 (14) 

𝑥𝑖−1,𝑗(𝑝) − 𝑥𝑖,𝑗(𝑝) ≥ 𝐿𝑖 + 𝑣𝑖,𝑗(𝑝) ∆𝑡 −
[𝑣𝑖,𝑗(𝑝) − 𝑣𝑚𝑖𝑛]

2

2𝑎𝑚𝑖𝑛,i
, 𝑖 = 𝑚 + 2, … , |𝐴| (15) 

𝑥𝑛,𝑗(𝑝) − 𝑥𝑚+1,𝑗(𝑝) ≥ 𝐿𝑚+1 + 𝑣𝑚+1,𝑗(𝑝) ∆𝑡 −
[𝑣𝑚+1,𝑗(𝑝) − 𝑣𝑚𝑖𝑛]

2

2𝑎𝑚𝑖𝑛,𝑖
 (16) 

Important properties of the optimizer I such as sequential feasibility and nonempty interior of the constraint 

set and solution uniqueness have been proved through mathematical analysis in our previous study [3]. 

This study also proved these properties for the optimizer II by several key theorems and lemmas, which 

helped us establish the distributed algorithm. 

3.3. Distributed algorithm, stability, and numerical experiments  

This section develops distributed algorithms for solving the Optimizers I and II above. The main idea of 

this algorithm is to enable each CAV to iteratively compute and update its local control law at next one step 

or 𝑃 steps according to other CAVs’ control laws until the solution converges to the system optimal 

solution. Our experimental study shows that the dual-based distributed algorithm developed in [3] can 

solve Optimizer-I nicely but hits huge difficulty to solve the Optimizer II with P steps of prediction since 

it leads to very small step size at the step of solving the primal problem. Therefore, this study develops an 

improved dual-based distributed algorithms according to the features of the problem formulations. Mainly, 

the previous gradient projection algorithm for solving the primal problem in [3] is replaced by a more 

efficient distributed algorithm which converges to the global optimal solution of the primal problem. The 

convergence of the distributed algorithms is proved by both the mathematical analysis and numerical 

experiments. Furthermore, we analyze the asymptotic string stability under the unconstrained closed-loop 

condition and provide important guidance to select the penalty weights used in the objective function of 

the optimizers in MPC. 

The numerical experiments based on the field data were conducted to validate the effectiveness and 

efficiency of the platoon control scheme. Mainly, the experiments compared the performance of a mixed 

flow platoon under two different control strategies. (i) Applying the cooperative platoon control. Namely, 

the experiments conduct one-step MPC for the CAV platoon 𝐴1 and P-step MPC for the CAV platoon 𝐴2. 

(ii) Applying independent one-step MPC for each CAV platoon. Namely, the experiments conduct one-step 
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MPC for both 𝐴1 and 𝐴2 excluding the movement anticipation of HDVs. One of the results is shown in 

Figure 3 due to the limit of the space. Clearly, the proposed control scheme can mitigate traffic oscillation 

more efficiently. Our other experiment results also demonstrate that the cooperative platoon control can 

mitigate speed fluctuation along the platoon more effectively under most of the frequencies. Meanwhile, 

the proposed distributed algorithm converges to the optimal solution quickly, thus it fits the online 

application very well.  

  
(a) (b) 

Figure 3. Speed fluctuation under different control schemes (green/purple lines for platoon 𝐴1/𝐴2) 

 

4. Summary 

This research works on a platoon mixed with CAVs and HDVs on a straight roadway. Without loss of 

generality, we consider that the sample mixed platoon consists of three sub-platoons, including two CAV 

platoons separated by a HDV platoon. We also assume that all CAVs in the mixed platoon are well 

connected. The car-following behavior of the human drivers is modeled by using the Newell car-following 

model with the parameters: reaction time and minimum stop distance. These two unknown parameters are 

anticipated by the curve matching learning algorithm using online vehicles trajectories data and the features 

of the Newell’s car-following model. Built upon the learning algorithm, this study proposes cooperative 

MPC for the two CAV platoons to ensure both transient smoothness and asymptotic stability of the entire 

platoon, while still keep the mobility of individual vehicles. Specifically, while the downstream CAV 

platoon 𝐴1  is controlled by the one-step MPC, this study uses the P-step constrained MPC for the 

upstream CAV platoon 𝐴2, in which P is determined by the anticipation of HDVs’ real-time reaction time. 

According to the mathematical features of the problem formulations, an improved dual-based distributed 

algorithm is developed to solve the MPCs. Its convergence is proved by both the mathematical analysis 

and the experimental results. Extensive numerical experiments based on the field data indicate that the 

distributed algorithm can solve the one-step and P-step MPCs efficiently, and the cooperative platoon 

control scheme outperforms the control strategy which independently using one-step MPC developed in 

[3] to each individual CAV platoons. The cooperative MPC can dampen traffic oscillation propagation and 

stabilize the traffic flow more efficiently for the entire mixed flow platoon. Overall, this paper presents a 

major advancement in addressing an important transportation problem by well integrated rigorous 

optimization, control, and traffic flow techniques. It will significantly contribute to CAV technologies in 

both intellectual merit and practical applications. 
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Emission-controlled pavement management scheduling 

 
Management of highway pavement requires considering an extensive set of structural, 
performance and environmental impacts simultaneously from both agency and user 
perspectives. Framework for employing mathematical decision modeling to address 
analytical approach need addressing life cycle impacts. This talk describes an analytic 
approach that can be used to evaluate and propose rehabilitation schedules based on 
economic, performance, and environmental considerations for various types of 
pavements managed by the Illinois State Tollway Authority. A mixed-integer nonlinear 
program (MINLP) is formulated to model the agency’s life-cycle cost and environmental 
impacts where the decision set consists of the maintenance overlay type and the 
thickness of the overlay proposed on a temporal scale over a planning horizon. The 
problem requires interaction of the integer and continuous variables that leads to MINLP 
formulation. Considering practical implications of the problem, the continuous variables 
are bounded into a finite and discrete set, while the integrality constraints are relaxed. 
The objective and constraints of the problem can be alternated to suit the needs of the 
agency, which may be interested in minimizing environmental impacts and restricting 
the cost to the agency, or vice versa, over the pavement life-cycle.  
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Reliable Sensor Deployment for Object Positioning and Surveillance in A Two-Dimensional Space  
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Introduction  

High-accuracy object positioning based on satellites (e.g. Global Positioning System (GPS)) or cellular 
phones has been playing a critical role in various application contexts such as vehicle navigation, driver 
guidance, aircraft tracking, extrasolar planets detection and missile and projectile guidance. Location 
detection is generally less accurate inside a building due to severe attenuation or blockage of satellite or 
phone signals. In recent years, massive availability of mobile devices has stimulated demand for indoor 
location‐aware applications, including in‐building guidance and location-based advertising in shopping 
malls, elderly navigation in nursing homes, hazardous materials detection in airports, and workforce 
tracking (policemen, firefighters). Indoor positioning systems utilize radio waves, Wi-Fi, Bluetooth, 
magnetic fields or other sensory information collected by the mobile devices. The effectiveness of such a 
positioning system highly depends on the quality (working range and precision level) and quantity of 
sensor coverages in the spatial area. Nevertheless, high-precision sensors are generally expensive to 
deploy, and installed sensors could be disrupted from time to time due to technological defects or 
deliberate sabotages. It remains a challenge to optimize sensor deployment locations that maximize the 
overall system-wide surveillance or positioning benefits under the risk of sensor failures. 

Trilateration is one of the most popular mathematical techniques that many positioning systems 
have used to geographically position an object. For example, in a Wi-Fi positioning system, received 
signal strengths from all existing Wi-Fi access points are gathered and converted to distances using 
existing signal propagation models (each positioning system may have its own distance calculation 
method). With the distance information, a trilateration algorithm is used to pinpoint the user location, 
typically based on distances data from at least three different sensors, as shown in Figure 1(a). In effect, 
as shown in Figure 1(b), due to signal scattering and blockage, the collected or calculated distance 
information may be inaccurate such that a single location cannot be precisely identified, and the error 
increases with the distance between the sensor and the object. It is worth noting that the error can be 
reduced if information from more sensors is used, as shown in Fig. 1(c), but the system architecture 
becomes more complex and the trilateration algorithm requires more time. Hence the number of sensors 
used should be carefully determined such that a certain level of accuracy can be achieved in a reasonable 
calculation time. Moreover, if a sensor is disrupted as shown in Fig. 1(d), a more remote sensor can be 
used and yet with a larger error. Hence, sensors should be assigned to the object at different backup levels 
such that the overall expected error across various sensor failure scenarios is minimized. 

 

Functioning 
sensor

object

Disrupted 
sensor

 
 (a) Ideal case           (b) Three sensors        (c) Multiple sensors      (d) Disruption scenario 

Fig. 1 Position error illustration in trilateration. 
 



Extensive studies have been conducted to determine the optimal deployment of sensors in a discrete 
network. Among them, Geetla et al. (2014) studied the omnidirectional sensor location problem for 
emergency responses. Audio sensors are deployed to detect vehicle crashes on a road or at an intersection 
within the detection range. Li and Ouyang (2011; 2012) investigated reliable traffic sensor deployment to 
estimate OD flow volume, congestion state, and path travel time. Adjacent sensors along each flow path 
pair up to monitor the road segment in between. These studies consider sensor deployment in either a 
zero-dimensional space (i.e., sensors work independently to provide coverage) or one-dimensional space 
(i.e., sensors work in pairs to monitor line segments). Few studies have considered sensor location 
problem in a two-dimensional plane, where at least three sensors are required to work together to locate a 
target.  
 

Methodology 

We consider an area (e.g. airport, shopping mall) which contains a set of spatial neighborhoods { }:I i=  

that need surveillance coverage. In airports, such neighborhoods can be security check gates, boarding 
gates and restaurants where accidents are more likely to occur due to crowds’ gathering. Each point i I∈   
attracts iv  customers per day. Let J  be the set of candidate locations for potential sensor installations. At 

most one sensor can be installed at each location j J∈ at a construction cost jf  . Let ijd  denote the 

distance from surveillance neighborhood i  to sensor location j . A sensor located at j  could be disrupted 

with a probability of jp  . We assume the receiver (can be the mobile device/object itself) always uses the 

nearest N , where 3N ≥ , sensors to calculate the position of the object. Without loss of generality, for 
modeling convenience, N  dummy sensors (located at 1,...,J J N+ +  ) are added to the system to ensure 

there are always at least N sensors available even under the worst case scenario in which all sensors are 
disrupted. Let J  be the set of dummy sensors and J Jϑ = ∪  be the set of all sensors. The dummy sensors 
incur 0 installation cost and are not subject to failure, but make no contribution to object positioning; this 
is modeled by setting , ,ijd j J i I= ∞ ∀ ∈ ∈ . Let K  be the set of candidate sensor combinations to locate 

customers. Each combination k K∈  contains exactly N  sensors (including the dummy ones) and could 
monitor i  with accuracy ike . We introduce incidence matrix { }kja  to represent the mapping relationships 

between combinations and sensors, where 1kja =  if combination k  contains sensor j , or 0 otherwise. 

The maximum number of combinations is 
0

N

t

J

t=

 
 
 

  , where t  indicates that t  regular sensors and N t−  

dummy sensors are used in the combination. Similarly, incidence matrix { }ikjb is introduced where 1ikjb = if 

sensor j  is the most remote sensor from neighborhood i  in combination k , or 0 otherwise.  

As such, the receiver/object will search from its nearest sensor until N sensors have been found (or 
no more sensor is available). The key decision variables { }: jX=X  determine sensor locations, where 

1jX = if a sensor is installed at location j  or 0jX = otherwise. For each surveillance neighborhood, the 

installed sensors are assigned to it at different levels. Variables { }: ijrZ=Z  determine the relative sensor 

levels, where binary variable 1ijrZ =  if sensor j  is the thr  nearest installed sensor to neighborhood i , or 0 

otherwise; { }: ikrY=Y  denote the sensor combination assignment to the customers, where 1ikrY =  if 

neighborhood i  uses combination k  whose most remote element sensor has level r , or 0 otherwise.  
Note that a combination k  corresponds to only one level r  , while there may exist multiple combinations 

corresponding to the same level r . ikrP is the probability for ikrY =1 to happen, and { }ikrP=P .  

The problem can now be formulated as the following mixed-integer non-linear program: 
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The objective function (1)  presents the expected system cost including the sensor installation cost and the 
expected total inaccuracy penalty. Constraints (2) enforce that customers can only use installed sensors. 
Constraints (3) ensure for a certain surveillance neighborhood, each dummy sensor must be assigned to it 
at a certain backup level. The same dummy sensor could be assigned to other surveillance neighborhoods 
at different levels. Constraints (4) postulate that if a dummy sensor j J∈ is assigned to surveillance 

neighborhood i  at level r  , then dummy sensor 1j +  must be assigned to i  at level 1r + . Constraints (5) 

require that at each level r, a surveillance neighborhood i  either uses a regular sensor, or it has used the 
first dummy sensor at level s r≤ . Constraints (6) state that for each surveillance neighborhood i , a 
nearer sensor must be assigned to an earlier level. Constraints (7) enforce that combination k  is available 
to surveillance neighborhood i  only if the N  sensors in k  are all installed. Constraints (8) require that 
combination k  is available to surveillance neighborhood i  when its element j  serves at level r .  

Constraints (9) and (10) recursively define the assignment probability ikrP . For modeling convenience, 

the failure probabilities of dummy sensors are set as a small constantε (i.e. 
jp j Jε= ∀ ∈ ). Given that 

the nearer sensors are used earlier, a combination k  is used if and only if its element sensors are all 
functioning, and the other constructed sensors closer than its most remote sensor (which has the highest 
level in k ) are all disrupted. The rigorous derivation of ikrP  is provided in the full paper. The current 

model is nonlinear due to the existence of nonlinear terms ikr ikrP Y  in (1) and 1ijr ikrZ P − in (9). Linearization 

techniques similar to those in Li and Ouyang (2012) are also described in the full paper.  
 

Preliminary results  

We use 3-by-3 and 3-by-4 networks to demonstrate the applicability of the model. The candidate sensor 



locations (evenly distributed in the region), and the surveillance neighborhoods are shown in Fig. 2. Each 

combination uses 3N =  sensors. Accuracy is computed based on 
( )2 ,kj

ik
j J

ij

a
e i I k K

d ε∈

= ∀ ∈ ∈
+

 , where ijd  

is the Euclidean distance. For simple illustration, we assume each facility is subject to an equal failure 

probability 0.1p = . ikrP can thus be simplified as 3(1 )
kjj J

a r
ikrP p p∈ −= −  where kjj J

a
∈ is the number 

of regular sensors in combination k . This way, ikrP  becomes a constant for each r  and can be 

preprocessed and the model becomes linear. The model is programed in C++ and is solved by CPLEX. 
The computation time for the 3-by-3 and 3-by-4 cases are 360 and 1820 seconds, respectively. The 
installed sensors are marked as green in Fig 2. 
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Fig. 2. Optimal sensor deployment for the 3-by-3 and 3-by-4 cases. 

 
Fig. 3 illustrates how the sensor combinations are used by customers in neighborhood 3i =  in the 3-

by-3 case. The installed sensors 3, 5, 9, 8, 7 are assigned to levels 1 to 5 based on distance, while the 
dummy sensors are assigned at levels 6 - 8. Some representative combinations are illustrated in this figure. 
For example, the shaded combination (k=u) will be used to monitor this neighborhood if and only if 
sensors 5, 9 and 8 are functioning and sensor 3 has been disrupted. The most remote sensor in this 
combination is 8, which is ranked at level r=4. Hence combination u corresponds to backup level r=4 and 
it will be used with a probability of 3 4 3

3 4 (1 0.1) 0.1 0.0729uP −= − = .  
 

2 5 1 93

surveillance 
neighborhood

combination

uninstalled sensor

installed sensor

dummy sensor

combination-
sensor pairr=1 r=2 r=3 r=6 r=7 r=8

k

j

i=3

6 8 74 10 11 12

r=4 r=5

u …

r  
Fig. 3. Assignment scheme of sensor combinations. 

 
Although CPLEX performs well in these 3-by-3 and 3-by-4 networks, its performance deteriorates 

rapidly as the problem size increases. It cannot provide an optimal solution for even a 4-by-4 network 
with an equal failure probability within several hours of computation time. In the full paper, we also 
present customized algorithms based on Lagrangian relaxation (LR) to improve the solution efficiency. 
Using LR, we relax constraints (2) to decouple the correlation among the surveillance neighborhoods, and 
this helps decompose the original problem into two sub problems, which can be solved separately. Also, a 
real-world application with site-dependent sensor failures will be presented in the paper to demonstrate 



the applicability of the model, the efficiency of the proposed algorithms, and insights and practical 
recommendations. 
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This paper investigates the role of stochasticity in traffic flow instabilities, which is a typical 

self-driven system far from equilibrium. We demonstrate that stochasticity is necessary to 

correctly describe the observed spatiotemporal dynamics of growing traffic oscillation in the car 

following process. A heuristic analysis qualitatively explains the concave growth of the oscillation 

amplitude along the vehicles of a platoon. Based on this analysis, we propose a simple 

car-following model containing indifference regions and acceleration noise described by 

Brownian motion which reproduces well the experimental and empirical observations. 

Key words: car following; stochasticity 

 

The emergence and evolution of oscillations as well as their development into jams is an intriguing pattern 

formation phenomenon in traffic flow, which is an undesired feature since stop-and-go movement is a nuisance to 

motorists, consumes more fuel, and likely causes more accidents. The true origin of these traffic waves, however, is 

still not clearly revealed. From the 1950s’, scientists always explain this phenomenon via linear stability theory. In 

most of the traffic models named as two-phase models, it is assumed that in the steady state, there is a one-to-one 

bivariate relationship ue(ρ) between mean speed u and traffic density ρ, or relationship V(x) between individual speed 

v and spacing x, defined as the gross distance between two neighboring vehicles (sum of bumper-to-bumper distance 

and vehicle length). Stability analysis shows that, in a certain density range, traffic flow is metastable or unstable. 

Oscillations emerge due to disturbances in the metastable and unstable traffic flows. The oscillations could grow and 

develop into jams via a subcritical Hopf bifurcation. 

Nevertheless, this explanation has been questioned in the last two decades. Based on the analysis of empirical 

detector data, Kerner classified the congested traffic into synchronized flow and jam, and proposed the three-phase 

traffic theory. In this theory, the steady state of synchronized flow is assumed to occupy a two-dimensional region in 

the flow-density plane rather than a unique relationship. The formation and evolution of oscillations have been 

explained by the observed compression of traffic at the location of breakdown. However, the underlying mechanism 

of this so-called “pinch effect” is unclear. 
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Recently Jiang et al. carried out a car following experiment on a 3.2-km-long open road section, in which a 

platoon of 25 passenger cars has been studied. The leading vehicle was asked to move with constant speed. Stripe 

structure has been observed in the spatiotemporal evolution of traffic flow, which corresponds to the formation and 

development of oscillations. It has been found that the standard deviations of speed increase in a concave way along 

the 25-car-platoon. Later, this concave growth pattern has also been found in real traffic flow. Moreover, Jiang et al. 

have shown that (i) the simulation results of some representative two-phase models, including General Motor models 

(GMs), Gipps’ Model, Optimal Velocity Model (OVM), Full Velocity Difference Model (FVDM), and Intelligent 

Driver Model (IDM), run against the experimental finding since the standard deviation initially increases in a convex 

way in the unstable density range; (ii) by removing the fundamental diagram in these two-phase models and allowing 

the traffic state to span a two-dimensional region in velocity-spacing plane (indifference region) and additionally 

introducing stochastic elements,, the growth pattern of disturbances has changed and becomes qualitatively or even 

quantitatively in accordance with the observations. 

We argue that some form of noise (or stochasticity) in the car-following process is necessary for a correct 

description of the pattern formation of oscillation growth. Next, we demonstrate the argument from heuristic analysis 

and simulation results. Firstly, we add white noise to the acceleration equation of time-continuous two-phase car 

following models resulting in 

 ( ) ( ), ( ), ( ) ( )n n n n na t a d t v t v t t                  (1) 

( ) 0, ( ) ( ) ( )n n n nnt t t Q t t     
                    (2) 

where,  ( ), ( ), ( )n n na d t v t v t  is the acceleration function of the underlying deterministic car following model for 

vehicle n as a function of the vehicle speed vn(t) at time t, the space gap dn(t) = xn+1(t) – xn(t) – Lveh and the relative 

speed vn(t) = vn+1(t) – vn(t) of the leading vehicle n+1. Here, Lveh is the vehicle length and xn is the position of vehicle 

n and xn+1 is the position of its leader, respectively. Furthermore, ( )n t  is the acceleration noise, <y> denotes the 

expectation value of y, and ( )t t   is Dirac's delta function which is defined by ( ) 0t t    for any t t  , 

( ) 1t t dt   . ij  is the Kronecker symbol, 1ij   for i=j, and zero, otherwise. Q is the noise intensity with the 

unit m2/s3. Notice that (1) and (2) can alternatively be written as a stochastic differential equation. 

 ( ) ( ), ( ), ( )n n n n tdv t a d t v t v t QdB                  (1) 

where 
tdB  denotes a Wiener process (Standard Brownian motion). Particularly, in the limit t → 0, the variance of the 

speed change of a given vehicle is that of a Brownian motion,  

 ( ) ( )n nVar v t t v t Q t                     (2) 

An example of this model class is the stochastic IDM (SIDM), whose deterministic acceleration function (i.e., 

that of the normal IDM) is defined by 
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where vmax is the maximum speed, amax the maximum acceleration, b the comfortable deceleration, T the desired time 

gap and d0 is the jam gap.  

Simulations of the platoon configuration by the SIDM (Figure 1) show that with the increase of stochasticity 

amplitude, the initially convex growth pattern gradually changes into concave growth pattern. Nevertheless, although 

noise is able to make the growth pattern of SIDM qualitatively agree with the experimental observations, there exist 

quantitative deviations (Figure 1). We also fitted the deterministic IDM parameters to the driving experiments of 

Figure 2 but this did not lead to a simultaneous quantitative agreement for all the experiments displayed in this figure.  

While this is not a proof that a two-dimensional region of steady states is necessary, it points to the difficulties of 

two-phase models in describing these observations. 

We will now show that introducing indifference regions in combination with noise can reproduce the 

observations.  

 

Figure 1. Speed standard deviation of a platoon of 25 vehicles as simulated with the SIDM with the parameters, amax = 

0.5m/s2, b = 2.0m/s2, T = 1.2s, vmax=30m/s, Lveh=5m, and d0=1.5m. The speed of the leading vehicle vleading= 30km/h.  

 

In order to clarify the mechanism, we first present a heuristic analysis in form of a stylized model with following 

behavior assumptions: (i) each driver has an indifference region, i.e., a range of gaps to the preceding car where there 

is no response to changes in the gap; (ii) a driver is able to adapt his/her vehicle’s speed to that of the preceding 

vehicle instantaneously. (iii) the adaptation is subject to independent noise contributions leading to an additional speed 

stochasticity  of mean <>=0 and variance Var<>=2. 

Assuming there is a platoon consisting of N vehicles on the road, where vehicle 1 is the leader and vehicle N is 

the end of the platoon. The speed of vehicle n is vn. Supposing that v1= v + 1, where v is constant speed and 1 

represents the stochasticity of vehicle 1. According to the above assumptions, vehicle 2 will move with the speed v2 = 

v1+ 2 and vehicle n will move with the speed vn = vn-1 + n, i.e.  
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vn = vn-1+n =v1 +2+…+n=v+1+…+n              (5) 

Since all i(i = 1,..,n) are independent, we obtain 

<vn>=v+n<>=v                   (6) 

Var(vn)= nVar()=n2                  (7) 

Thus, the standard deviation of the speed of vehicle n increases in a concave way along the platoon. 

n n                      (8) 

Figure 2 (a)-(e) compares the standard deviation of the time series of the speed of each car in the platoon of 

Jiang’s car following experiments with the results predicted by Equation (8), which demonstrates that the predicted 

results are highly consistent with the experimental results. 

      

Figure 2. The standard deviation of the vehicle speed in the platoon. The car number 1 is the leading car of the platoon. The 

symbol solid black lines are the experiment results. In (a)-(e) the solid red lines are obtained by Equation (8), where 2 = 

0.362, 0.391, 0.359, 0.308 and 0.212[m/s]2. In (a1)-(g1) the solid red lines are the simulation results of the BIDM, where a = 

0.53m/s2, b = 1.7m/s2, T1 = 0.5s, T2 = 1.8s, vmax = 120km/h, A = 0.042 m2/s4, d0 = 1.5m, Lveh=5m and t = 0.1s. From top to 

bottom, the leading vehicle of the platoon is required to move with vleading=50, 40, 30, 15 and 7km/h, respectively. 

 

To integrate the above “toy model” into the full car-following process, we propose a very simple car following 

model as follows: (i) when the spacing between vehicles is in the indifference region [d1, d2], the acceleration of 

vehicles will only change stochastically, i.e. their accelerations obey the Brownian movement; (ii) when the spacing is 

outside the indifference region, the normal deterministic car following acceleration applies. We will denote models 

incorporating these rules as models with Brownian movement. Taking the IDM as an example, the IDM with 
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Brownian motion (BIDM) is specified in discrete time with time step t, t=jt, as follows: 
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where 
nja  denotes the stochastic acceleration part obeying  

0nja  , and 
nj n j nn jja a A                                   (10) 
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y
y x y y  is the bounded function. A is the noise intensity with the unit m2/s4. The critical 

space gaps are defined as follows: 

0

max

( ) ( )
( ) max ( ) ,0

2

i n n
n n i

v t v t
d t v t T d

a b

 
   

 
 

                   (11) 

where the index i = 1, 2 and 3. Ti is the time gap and T3=(T1+T2)/2 for simplicity. 

Figure 2 (a1)-(g1) show that the growth rate of the disturbances is consistent with the experimental data. 

Therefore, it can be concluded that the BIDM can reproduce Jiang’s experiments very well.  

 

Conclusion 

Stochasticity has been neglected in traffic flow theory for a long time. In many models, stochasticity is not 

considered at all or is considered only as a kind of marginal effect, such as acceleration noise. However, this paper 

demonstrates that stochasticity in connection with indifference zones plays a decisive role in the pattern formation in 

traffic flow.  

We believe that clarifying the role of the stochasticity in the formation and development of oscillations has 

significant implications in that: (1) it reveals the underlying mechanism of traffic flow instability, i.e. the origin of 

traffic jam formation; (2) it allows constructing correct models and accordingly right testing bed for traffic 

technologies alleviating traffic jams, such as adaptive cruise control (ACC) and vehicle-to-X (V2X) technologies. 
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Extended Abstract 

In this study, we are interested in dynamic calibration of car following parameters in order to explore both 

inter-driver and intra-driver heterogeneity. Specifically, we offer an augmented state space system for a 

lower order linear spacing car following model, and implement a modified Kalman filter algorithm in order 

to track the leader-follower pairs and simultaneously predict and estimate the parameters related with the 

behavior of the following drivers. 

Microscopic traffic models consider the interaction of individual vehicles with nearby vehicles as well 

as the transportation infrastructure in a very detailed resolution to calculate the next position of the vehicles 

under consideration for a short term horizon (typically around 0.1 to 1 second) that gets updated as the 

simulation runs. Car Following (CF) models that describe the longitudinal motion of a vehicle under the laws 

of motions of physics along with a car following behavioral aspect and Lane Changing (LC) models that 

probabilistically define the lateral movements of a vehicle as instantaneous decision models are the two 

types of models applied in the context of microscopic traffic simulation. 

Newell [New02] proposes a simplified car following theory where, in free flow, the vehicles travel at 

their desired speeds. However, in congestion, the follower adjusts his speed to the speed he observes from 

his leader according to a spacing of his preference at that speed, which results in a copy of the leader’s 

trajectory, but shifted by a translation in time and space given by the following equation.  

𝑥𝑛(𝑡 + 𝜏𝑛) = 𝑥𝑛−1(𝑡) − 𝑑𝑛 (1) 

In equation (1), x denotes the position of the leading and the following vehicles, subscripted by n-1 and 

n, respectively at time points given inside the parenthesis. The parameters 𝜏𝑛 and 𝑑𝑛 describe the simplified 

car following behavior of the follower n, and it is further assumed that 𝜏𝑛 and 𝑑𝑛 come from a bivariate 

normal distribution which are also independent from the other vehicles [New02]. 

Equation (1) is also equivalent to the linear spacing model given in equation (2) below   

𝑠𝑛(𝑡 + 𝜏𝑛) = 𝑑𝑛 + 𝑣𝑛−1(𝑡)𝜏𝑛 (2) 

where 𝑠𝑛 represents the spacing the follower n chooses to have at time 𝑡 + 𝜏𝑛 with respect to the speed 

𝑣𝑛−1(𝑡) of its leader observed at time 𝑡, by also adopting the exact same speed at 𝑡 + 𝜏𝑛, so that 

𝑣𝑛(𝑡 + 𝜏𝑛) = 𝑣𝑛−1(𝑡). The illustration of Newell’s car following model can be found in Figure 1. 
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(a) Free Flow Behavior            (b) Congestion and Speed Adjustment 

 

(c) Linear Speed-Spacing Relation 

FIGURE 1 Newell’s Linear Spacing Car Following Model, adapted from [New02] 

 

An advantage of this model is that the disturbances that are caused by driver inhomogeneity propagate 

according to rules that govern the macroscopic traffic flow, which represent the aggregate behavior of the 

vehicles on the road as an average rather than getting amplified [ACL04]. 

Daganzo [Dag06] show the equivalence between the cellular automata and kinematic wave models 

that also explains the bridge between the macroscopic models and Newell’s simplified car following model 

[New02] under the assumption of a triangular fundamental diagram. Ahn et al. [ACL04] validate Newell’s 

car following model by analyzing field data of vehicles discharging from long queues and verify that the 

parameter pairs are independent between drivers, and thus justify that variation was due to driver 

inhomogeneity. Ossen et al. [OHG06] studies the behavior of following vehicles under several car following 

models by a simulation approach and conclude that inter-driver behavior differences have to be considered 

instead of purely focusing on a single parameter setting that gives the best fit between the trajectories of 

the leader and the follower. More recently, Ossen and Hoogendoorn [OH08] study the effects of 

measurement noise on microscopic car following model parameter calibration by introducing several types 

of noise to synthetic data, and discover that the optimal calibration models under certainty assumption 

considerably fail due to the not so robust tendency of the objective function to small changes that result 

from noisy data, and therefore, conclude that some kind of smoothing or filtering is required in such 

situations. Kesting and Treiber [KT08], develop a genetic algorithm that integrates multiple car following 



models in a nonlinear optimization framework in order to minimize the deviations of the estimated follower 

dynamics from those of the measurements by trying to reproduce the trajectory of the following vehicle. 

They also apply the parameters that are calibrated to a specific following vehicle to another one, and reveal 

that intra-driver heterogeneity is as important as inter-driver heterogeneity in terms of calibration errors. 

Duret et al. [DCB09] show that variability between different vehicles can be explained by estimating the 

parameters that induce a linear speed-spacing relation for the congested region of the fundamental 

diagram. Using NGSIM data, they find the best values of the parameters for Newell’s car following model 

so that the reconstructed trajectories are as close as possible to the original ones. Chiabaut et al. [CLB10] 

propose an efficient method to estimate the parameters of Newell’s simplified car following model by using 

the relative standard deviation measure rather than a classical criterion such as the mean square error as 

an objective to minimize the variations in measurements along the sampled trajectories. Taylor et al. 

[Tay15] develop a dynamic time warping (DTW) algorithm in order to estimate time dependent parameter 

values for Newell’s car following model. Through numerical experiments on NGSIM data, they are able to 

show that intra-driver inhomogeneity, which can be described as a change of single driver’s behavior in 

time during a trip, is also an issue in addition to inter-driver inhomogeneity. 

Since the purpose of the study is to dynamically calibrate 𝜏𝑛 and 𝑑𝑛, introducing them into the state 

definition gives the augmented state 𝐱 = [𝑥𝑛−1, 𝑥𝑛 , 𝜏𝑛, 𝑑𝑛]
𝑇, where the bold x represents vector notation. 

Further assuming that the transition of the new states 𝜏𝑛 and 𝑑𝑛 towards the next time step will be an identity 

transform corrupted with Gaussian noise only, we can rearrange the whole state transition, which results in 

the matrix form given in the below equation. 

[

𝑥𝑛−1(𝑡 + Δ𝑡)
𝑥𝑛(𝑡 + Δ𝑡)
𝜏𝑛(𝑡 + Δ𝑡)
𝑑𝑛(𝑡 + Δ𝑡)

] = [

1 0 𝑣𝑛−1(𝑡) 0

0 1 𝑣𝑛(𝑡) 0
0 0 1 0
0 0 0 1

] [

𝑥𝑛−1(𝑡)
𝑥𝑛(𝑡)
𝜏𝑛(𝑡)
𝑑𝑛(𝑡)

] + 𝛙(𝑡)  (5) 

Given that both the leader and follower positions (𝑥𝑛−1, 𝑥𝑛) are available through somewhat noisy GPS 

measurements, and the spacing (𝑠𝑛) between them is provided through certain sophisticated technologies 

in the following vehicle, we can write the measurement equation in matrix form as below. 

[

𝑥𝑛−1(𝑡 + Δ𝑡)

𝑥𝑛(𝑡 + Δ𝑡)

𝑠𝑛(𝑡 + Δ𝑡)
] = [

1 0 0 0
0 1 0 0
0 0 𝑣𝑛−1(𝑡) 1

] [

𝑥𝑛−1(𝑡 + Δ𝑡)
𝑥𝑛(𝑡 + Δ𝑡)
𝜏𝑛(𝑡 + Δ𝑡)
𝑑𝑛(𝑡 + Δ𝑡)

] + 𝛏(𝑡)  (6) 

Note that 𝛙(𝑡), and 𝛏(𝑡) represent zero mean state and measurement noises with covariance matrices 

Q and R, respectively.  

Typically, in order for both the state and the measurement equations to hold for the underlying linear 
spacing model, the continuous increment Δ𝑡 should be equal to 𝜏𝑛(𝑡). However, discretization is required 

for implementation purposes, so one should find the discrete time step value through rounding 𝜏𝑛(𝑡) to 
the nearest integer multiple of 0.1 second since the discretized data is available in 0.1 second resolution. 
An illustration of the Kalman filter algorithm with discrete timestamps indexed by j is given in Figure 2. 



 

FIGURE 2 Illustration of an iteration of the Kalman filter algorithm 

 

The proposed approach is tested on the trajectories from the Next Generation Simulation (NGSIM) 
project data and shows satisfactory results. This study also points that intra-driver inhomogeneity is an 
inevitable phenomenon that should not be overlooked in short term traffic state estimation and prediction. 
A computationally efficient and structurally appropriate algorithm such as a Kalman filter can also improve 
real-time estimation of macroscopic traffic features like density, flow and speed through just-in-time 
measures of backward wave speed as an outcome of this study. As a future study, application of this 
framework on a platoon level is under development, which is intended to give more aggregate information 
about the overall traffic state. 
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1. Introduction 

Continuous flow dynamic network loading (DNL) models have been studied extensively in recent 

decades, and proved useful in many practical applications. Popular examples are the cell transmission 

model – CTM (Daganzo 1994) and the link transmission model – LTM (Yperman et al. 2006). One of 

the challenging issues in these models is the way priorities of different traffic streams (commodities) 

are managed. In many previous studies, as early as Carey (1986) and Smith (1993), flow propagation 

priority rules aimed to satisfy the first-in-first-out (FIFO) condition; but most practical continuous 

flow dynamic models do not satisfy FIFO perfectly. Many of these models are very useful, despite 

their deviation from FIFO.  Following previous publications (Blumberg and Bar Gera, 2009; Carey et 

al., 2014), the purpose of this study is to explore the efforts that might be needed if full adherence to 

network-wide FIFO is desired, as well as whether it should be pursued and for what purposes.  

 

It is well known that in real traffic adherence to FIFO is not perfect. Some may argue that if our 

models deviate from FIFO and reality deviates from FIFO then there is no problem. However, there is 

no a-priori reason to assume that the deviations from FIFO in models (stemming from computational 

reasons) should bear resemblance to the deviations from FIFO in real traffic (stemming from driver 

behavior). In addition, there is no reason to assume that alternative priority rules will be easier than 

FIFO to implement computationally, especially if such rules will be derived from quantitative 

empirical evidence to reflect actual traffic behavior. 

 

The full paper (Bar-Gera and Carey, 2017) considers six different ways to represent dynamic flow 

solutions over a network. For each representation one may ask whether it is sufficient for verifying 

FIFO, whether the verification process is finite, and whether proving FIFO can be directly implied. 

The evaluation involves eight alternative definitions of FIFO, seven of them are shown to be 

essentially equivalent, while the last definition is not, and may therefore be considered as “weak” 

FIFO. In this extended abstract a few key findings are highlighted, primarily using illustrative 

examples. Section 2 describes the limitations of pre-determined time steps. An example for the 

limitations of history lists is provided in Section 3. Section 4 shows why certain straight forward 

approaches for FIFO verification may lead to infinite processes. Conclusions and future potential 

research directions are presented in section 5. 

                                                           
1
 Ben-Gurion University of the Negev, Department of Industrial Engineering and Management, P.O.Box 653 

Beer-Sheva, 84105 Israel. bargera@bgu.ac.il 
2
 Ulster University Business School, Ulster University, Northern Ireland  BT37 0QB, UK. m.carey@ulster.ac.uk 

mailto:m.carey@ulster.ac.uk


2 
 

2. The limitations of predetermined time steps 

The original CTM and LTM models (Daganzo 1994; Yperman et al. 2006) assume a predetermined 

grid, in which time is divided into regular “steps” of fixed duration. The following example illustrates 

why perfect FIFO may require consideration of additional points in time. Consider two routes, 𝑟1 and 

𝑟2, sharing one cell (or link) 𝑎 with entrance capacity of 6 vehicles per time step and exit capacity of 4 

vehicles per time step. In the first time step 6 vehicles from route 𝑟1 enter the cell, and in the 

following time step 2 vehicles from route 𝑟2 enter the cell. The cumulative volumes at the cell 

entrance and exit by route and time are given in table 1, using the regular pre-determined time step 

resolution.  

 

Label Location t=0 t=1 t=2 t=3 

Route 𝑟1 Entrance 0 6 6 6 

Route 𝑟1 Exit 0 0 4 6 

Route 𝑟2 Entrance 0 0 2 2 

Route 𝑟2 Exit 0 0 0 2 

Total (𝑎) Entrance 0 6 8 8 

Total (𝑎) Exit 0 0 4 8 

Comment: the value in each cell represent the cumulative volume by route, location and time. 

Table 1: Illustration of the limitations of pre-determined time steps for FIFO satisfaction 

 

The most straightforward interpretation of this solution is obtained by linear interpolation, suggesting 

that the last two vehicles on route 𝑟1 exit in parallel with the two vehicles on route 𝑟2. This is a FIFO 

violation, since all vehicles on route 𝑟1 entered the cell before all vehicles on route 𝑟2. The problem 

can be easily fixed by adding a breakpoint at 𝑡 = 2.5, yet such breakpoint is not part of the original 

grid. The general question is how many breakpoints are needed, and how can these be determined. 

 

It is worth noting that solutions with predetermined time-steps may also cause inaccuracies with 

respect to other DNL conditions (e.g. spillback). Several studies used grid-free methods to compute 

exact solutions in terms of other DNL conditions (e.g. Mazaré et al., 2011; Raadsen et al., 2015); but 

these studies did not address the issue of perfect network-wide FIFO in a multi-commodity context. 

 

3. Time step histories 

In CTM the problem presented in table 1 is typically solved by consideration of entrance time within 

the current cell. But if the “entrance” and “exit” considered above relate to a longer segment shared 

by the two routes, possibly containing several cells or links, then tracking entrance time within one 

cell (or one link) will not be sufficient. Smith (1993) proposed to track the entire history of entrance 
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times throughout the route. This is probably one of the most elaborate schemes for handling network-

wide FIFO in finite-dimensional solutions, and may seem as far as one would wish to go in an effort 

to satisfy FIFO. However, as we shall see, history lists are not sufficient for perfect FIFO verification.  

 

Consider the network in figure 1 and the time-step-histories listed in table 2. Four units of traffic 

travel along two routes. In both cases (4A and 4B) there are no direct violations of FIFO, i.e. in both 

solutions the exit order at node 4 is consistent with the time-step-histories. Yet an attempt to elaborate 

the interpretation by adding breakpoints of time, leads to a conclusion that the solution in 4A does not 

satisfy FIFO, while the solution in 4B does satisfy FIFO. This example shows why time-step-histories 

are not sufficient for perfect network-wide FIFO verification.   

 

 

Figure 1: an example of a network with one merge and one diverge  

 

Volume Route 𝑇𝑠(1) 𝑇𝑠(2) 𝑇𝑠(3) 𝑇𝑠(4) 𝑇𝑠(5) 𝑇𝑠(6) 

1 [1,3,4,5] 1  3 4 6  

1 [1,3,4,6] 2  3 4  5 

1 [2,3,4,5]  2 3 4 5  

1 [2,3,4,6]  1 3 4  6 

A. Time-step-histories that do not contain direct FIFO violation, but do not satisfy perfect FIFO. 

Volume Route 𝑟(𝑐) 𝑇𝑠(𝑐, 1) 𝑇𝑠(𝑐, 2) 𝑇𝑠(𝑐, 3) 𝑇𝑠(𝑐, 4) 𝑇𝑠(𝑐, 5) 𝑇𝑠(𝑐, 6) 

1 [1,3,4,5] 1  3 4 5  

1 [1,3,4,6] 2  3 4  6 

1 [2,3,4,5]  2 3 4 6  

1 [2,3,4,6]  1 3 4  5 

B. Time-step-histories that do not contain direct FIFO violation, and do satisfying perfect FIFO. 

Table 2: An illustration of the difference between time-step-histories FIFO and perfect FIFO 
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4. Verifying FIFO in a network with cycles 

The problems shown in the previous sections could be solved by adding breakpoints in time. One 

straightforward approach to FIFO verification (and satisfaction) is to add any breakpoint of time that 

could be needed, traced forward as well as backwards along routes, so that the same set of breakpoints 

at a node applies to all routes, and the implied breakdown of traffic into components (or “cohorts”) 

remains the same throughout each route. This section illustrates why this could lead to an infinite (or 

extremely large) number of breakpoints. For the sake of conciseness, the exposition here is less formal 

mathematically; further details can be found in (Bar-Gera and Carey, 2017).   

 

Consider the 6-nodes 8-links network in figure 1. Suppose that the length of each outer link is 20 m, 

the length of links [3,5] and [6,2] is 40 m, the free flow speed is 20 m/s, and the capacity is 10 v/s. In 

addition to the overall link capacities, there are bottlenecks at the exits from links [3,5] and [6,2] with 

a capacity limitation of 1 v/s. Four routes are used: 𝑟1 = [1,2,3,4,5,6]; 𝑟2 = [1,2,3,5,6]; 𝑟3 =

[4,5,6,1,2,3]; 𝑟4 = [4,5,6,2,3]. The initial flow on all routes is 1 v/s, so there is no congestion and all 

traffic moves at free flow speed. At a certain time, 𝑡0, the flow on route 𝑟2 increases to 1 + 𝛿1 for one 

second, and the flow on route 𝑟4 increases to 1 + 𝛿2 for one second. As a result queues of 𝛿1 and 𝛿2 

vehicles are created on links [3,5] and [6,2] respectively, and the travel times on these links increase 

from 2 to 2 + 𝛿1 and 2+𝛿2  respectively. Subsequently, flows return to their original values, so the 

new travel times remain unchanged for the remainder of the simulated period. The solution in this 

case could be described with a very small number of breakpoints, but if these breakpoints are traced 

as described above, the resulting set of breakpoints contains any sum of integer products of 𝛿1 and 𝛿2. 

Depending on the specific values of 𝛿1 and 𝛿2this set could be very large, or even infinite. 

 

 

Figure 1: an example of a network with cycles illustrating FIFO challenges 
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5. Conclusions and future research 

In a nutshell, the key conclusion of this analysis is that in order to satisfy perfect network-wide FIFO 

the number of discretized elements of flow should probably be allowed to grow quickly and 

unboundedly with model duration, and it cannot be determined a-priori. The implication is that 

practical usage of perfect FIFO solutions is probably impossible. If breakpoints of time are added 

more cautiously (see details in Bar-Gera and Carey, 2017), methods for computing perfect FIFO 

solutions could perhaps be developed in future research, at least for specific limited problems. Such 

solutions can then be used for the evaluation of FIFO violations in other, more practical methods, and 

thus contribute to the understanding of the properties of such methods. 
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Introduction 

 

Parking in downtown areas has usually been a headache for both commuters and traffic managers in 

many metropolises because of the limitation of parking slots in center areas. Cruising for a parking spot 

and the walking time to the working place will also be an emphasis part of the commuter’s decision 

whether he/she travel by auto or transit. Levying parking fee is not a prospective way to decrease the 

parking demand since in some cases they may exceed the total vehicle operating cost. Due to the lack 

of land in CBD areas, we cannot simply construct new parking facilities to satisfy the commuters. 

Especially in cities like Hong Kong, the high density of traffic and limited road capacity will be the 

restrictions to its development. Shoup (2006) has found that 30% of traffic congestion in road networks 

is caused when people are circulating around to find a parking spot, and about 8.1 min is spent in finding 

a parking spot. Another research (Ayala et al., 2011) also introduces in Chicago, in order to find a 

parking slot, people will suffer extra 63 million miles driving each year, which generates 48,000 tons 

of carbon dioxide to the environment. 

 

Parking management is normally considered as an integrated part of travel demand management. From 

this perspective, levying some road toll on the vehicle (Verhoef et al., 1995; Arnott and Inci, 2006; 

Zhang et al., 2008 and Qian et al., 2011 and 2012) is considered to be effective for mitigating traffic 

congestion and regulating parking demand. Zhang et al. (2011), Yang et al. (2013) and Liu et al. (2014a, 

b) found that parking reservation through parking permits distribution and trading is efficient in traffic 

management. Particularly, it was found that an appropriate combination of reserved and unreserved 

parking spots can temporally relieve traffic congestion at the bottleneck and hence reduce the total 

system cost, because commuters without a reserved parking spot are compelled to leave home earlier 

in order to secure a public parking spot. A latest review of the economic analysis and modeling of 



parking was given by Inci (2015). It is also noteworthy that there has been a number of recent studies 

that examined parking slot allocation and pricing using game theory or incorporated parking searching 

process as part of the traffic network equilibrium problem in a network context (Boyles et al., 2015; Liu 

and Geroliminis, 2016; Zou et al., 2015; He et al., 2015; Cao and Menendez, 2015; Du and Gong, 2016; 

Zheng and Geroliminis, 2016).  

 

To reduce the wastage of cruising for parking, some smart parking systems have been set up to make 

guidance for people to park their vehicles. In San Francisco, SFPark (http://sfpark.org/) puts all the 

information online for people to park and also uses demand-dependent parking fees to coordinate the 

traffic congestion in different areas. Geng and Cassandras (2013) propose a novel ‘smart parking’ 

system which can be downloaded as a smart phone app to help individuals reserve or find both on street 

and off street parking slots and the result shows quite positive, when people are informed the details of 

parking slot, they can save a slot of time and the parking slots will be further utilized as well.  

 

Based on improving the utilization of existing parking slots, shared parking will be a new notion of 

making more efficient use of parking facilities. It uses the private parking slots when the owners are not 

using. This can be feasible for most of the private parking slots are not used during the working hours 

since their owners go to work in other locations, and also their pattern of availability remains the same 

in a long term. Moreover, shared parking can be a win-win strategy since on the one side the rigid 

parking demand can be satisfied, on the other side the parking slot owners can make additional income 

by suffering little inconvenience. 

 

Considering the above new business opportunity and model particularly in an area with mixed 

commercial and residential land use developments, parking slot management companies intend to 

temporarily repurchase some private parking slots and sell them to public users during certain time of 

a day. Guo et al. (2016) was the first one to develop a simulation-optimization based decision method 

to determine the repurchase strategy. A Gaussian mixture model was proposed to describe the time-

varying arriving/departing behavior of drivers, and the expected optimal repurchase amounts and 

parking time were estimated via simulation optimization. Shao et al. (2016) considered advanced 

booking and allocation of shared parking slots and proposed a simple binary integer linear programming 

model to allocate the requests to specific parking slots so as to maximize the parking slot utilization or 

accommodate as many requests as possible under parking space and time constraints. Xu et al. (2016) 

addressed the private parking slot sharing problem during regular working hours in a big city by using 

market design theory. Their experimental results showed that the proposed mechanisms would result in 

remarkable social welfare gain and budget balance for the e-parking platform in cities with a large 

population.  

 

http://sfpark.org/


A two-sided market is a meeting place for two groups of agents who interact through an intermediary 

or platform and provide each other with network benefits. Particular two-sided markets, like credit card 

services that connect cardholders and affiliated merchants and operating systems that connect 

application developers and clients, have emerged over a long period, but the theory of two-sided markets 

was developed after the year 2000. Rochet and Tirole (2004) analyze the price allocation in both side 

of the market under several different situations and also compare the optimal pricing structures between 

private and social cases. Caillaud and Jullien (2003) determine the equilibrium of two-sided market 

structures which emerge and characterize the efficiency properties. Armstrong (2006) gives three 

models to illustrate the competition in two-sided market which are monopoly platform, two-sided 

single-homing and competitive bottleneck. Economides and Tåg (2012) discuss the network neutrality 

regulation in two-sided market model and focus on the cross-group externalities heterogeneity among 

consumers and content providers. Diverse issues related to the two-sided markets were reviewed and 

addressed by Roson (2005) under various assumptions about timing, price instruments and externalities.  

 

In this paper, we consider the optimal price strategy of shared e-parking platform with elastic demand 

and supply. Combined with the allocation function which is similar to the matching function given by 

Yang and Yang (2011) in taxi market in aggregate analysis, our model is based on the model of 

Armstrong (2006) and Economides and Tåg (2012) to analyze the price strategies of both sides under 

three different scenarios. We find out that when the platform serves as a reseller, the profit of monopoly 

platform can be maximized when the ratio of prices is less than a specific value and the platform is in 

deficit all the time when system optimal is achieved. While when the platform serves as an agent, the 

contract curve is a linear segment with a constant slope. By comparing with the two roles the platform 

serves, we find that when that the platform serves as an agent is profitable, the efficiency of the platform 

will always be greater than the reseller case. Moreover, both selling and buying prices are also greater 

than reseller case.  

 

References 

 

Armstrong, M., 2006, Competition in two-sided markets. The RAND Journal of Economics 37, 668-

691. 

Arnott, R., Inci, E., 2006. An integrated model of downtown parking and traffic congestion. Journal of 

Urban Economics 60 (3), 418-442. 

Ayala, D., Wolfson, O., Xu, B., DasGupta, B., Lin, J., 2011. Parking slot assignment games. In: 

Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic 

Information Systems. http://dx.doi.org/10.1145/2093973.2094014. 

Boyles, S.D., Tang, S., Unnikrishnan, A., 2015. Parking search equilibrium on a network. 

Transportation Research Part B: Methodological 81, 390-409. 

http://dx.doi.org/10.1145/2093973.2094014


Caillaud, B., Jullien, B., 2003. Chicken & egg: Competition among intermediation service providers. 

The RAND Journal of Economics 34, 309-328. 

Cao, J., Menendez, M., 2015. System dynamics of urban traffic based on its parking-related-states. 

Transportation Research Part B: Methodological 81, 718-736. 

Du, L., Gong, S., 2016. Stochastic Poisson game for an online decentralized and coordinated parking 

mechanism. Transportation Research Part B: Methodological 87, 44-63. 

Economides, N., Tåg, J., 2012. Network neutrality on the Internet: A two-sided market analysis. 

Information Economics and Policy 24, 91-104 

Geng, Y., Cassandras, C., 2013. New "smart parking" system based on resource allocation and 

reservations. IEEE transactions on Intelligent Transportation Systems 14 (3), 1129-1139. 

Guo, W., Zhang, Y., Xu, M., Zhang, Z., Li, L., 2016. Parking spaces repurchase strategy design via 

simulation optimization. Journal of Intelligent Transportation Systems: Technology, Planning, and 

Operations 20 (3), 255-269. 

He, F., Yin, Y., Chen, Z., Zhou, J., 2015. Pricing of parking games with atomic players. Transportation 

Research Part B: Methodological 73, 1-12. 

Inci, E., 2015. A review of the economics of parking. Economics of Transportation 4 (1–2), 50-63. 

Liu, W., Geroliminis, N., 2016. Modeling the morning commute for urban networks with cruising-for-

parking: An MFD approach. Transportation Research Part B: Methodological 93, 470-494. 

Liu, W., Yang, H., Yin, Y., 2014a. Expiable parking reservations for managing morning commute with 

parking space constraints. Transportation Research Part C: Emerging Technologies 44, 185-201. 

Liu, W., Yang, H., Yin, Y., Zhang, F., 2014b. A novel permit scheme for managing parking competition 

and bottleneck congestion. Transportation Research Part C: Emerging Technologies 44, 265-281. 

Qian, Z., Xiao, F., Zhang H.M., 2011. The economics of parking provision for the morning commute. 

Transportation Research Part A: Policy and Practice 45 (9), 861-879. 

Qian, Z., Xiao, F., Zhang H.M., 2012. Managing morning commute traffic with parking. Transportation 

Research Part B: Methodological 46 (7), 894-916. 

Rochet, J., Tirole, J., 2004. Platform competition in two-sided markets. Journal of the European 

Economic Association 1. 990-1029. 

Roson, R., 2005. Two-sided markets: A tentative survey. Review of Network Economics 4, 142-160. 

Shao, C., Yang, H., Zhang, Y., Ke, J., 2016. A simple reservation and allocation model of shared 

parking slots. Transportation Research Part C: Emerging Technologies 71, 303-312. 

Shoup, D.C., 2006. Cruising for parking. Transport Policy 13, 479-486. 

Verhoef, E., Nijkamp, P., Rietveld, P., 1995. The economics of regulatory parking policies: The 

(im)possibilities of parking policies in traffic regulation. Transportation Research Part A: Policy 

and Practice 29 (2), 141-156. 

Xu, S.X., Cheng, M., Kong, X., Yang, H., Huang, G.Q., 2016. Private parking slot sharing. 

Transportation Research Part B: Methodological 93, 596-617. 



Yang, H., Liu, W., Wang, X., Zhang, X., 2013. On the morning commute problem with bottleneck 

congestion and parking space constraints. Transportation Research Part B: Methodological 58, 

106-118. 

Yang, H., Yang, T., 2011. Equilibrium properties of taxi markets with search frictions. Transportation 

Research Part B: Methodological 45, 696-713.  

Zhang, X.N., Huang, H.J., Zhang, H.M., 2008. Integrated daily commuting patterns and optimal road 

tolls and parking fees in a linear city. Transportation Research Part B: Methodological 42 (1), 38-

56. 

Zhang, X.N., Yang, H., Huang, H.J., 2011. Improving travel efficiency by parking permits distribution 

and trading. Transportation Research Part B: Methodological 45 (7), 1018-1034. 

Zheng, N., Geroliminis, N., 2016. Modeling and optimization of multimodal urban networks with 

limited parking and dynamic pricing. Transportation Research Part B: Methodological 83, 36-58. 

Zou, B., Kafle, N., Wolfson, O., Lin, J., 2015. A mechanism design based approach to solving parking 

slot assignment in the information era. Transportation Research Part B: Methodological 81, 631-

653. 



Integration of an aggregated dynamic traffic model with 

advanced optimization techniques for strategic transit-

parking planning 

Joana Cavadas a,*, António P. Antunes a , Nikolas Geroliminis  b 

aCITTA, Department of Civil Engineering, University of Coimbra, Portugal 
b Schoool of Architecture, Civil  and Environmental Engineering, Laboratory of Urban Transport Systems, École Polytechnique 

Fédérale de Lausanne (EPFL), Switzerland.  

 

Public transit systems are essential for the mobility in urban areas. These systems play a crucial 

role not only in providing those who cannot own or drive a car with an acceptable level of mobility 

(Preston and Rajé, 2007), but also with respect to the pursuit of all the dimensions of sustainable 

development. As a matter of fact, by helping to reduce fuel consumption, pollutant emissions and 

traffic congestion in comparison to the automobile, urban transit is clearly advantageous from the 

environmental and economic standpoints (Schiller et al., 2010). On the other hand, at least in 

Europe and North America, transit systems are a source of financial problems for local 

governments, as their revenues are rarely enough to cover their expenses (APTA, 2010).  

A possible approach to circumvent transit financial problems is to manage transit systems and 

parking systems in an integrated manner, using parking fees to fund transit deficits. For this 

purpose, we developed an optimization-simulation modeling approach for assisting local 

governments in the establishment of pricing policies for the transit networks and parking areas 

under their control, directly or indirectly (through concessions). This approach has two 

components: a mixed-integer nonlinear optimization model and a network level aggregate traffic 

model based on the macroscopic fundamental diagram (MFD). The latter model provides a 

relationship between network space-mean vehicle density and flow in urban areas with small 

spatial density heterogeneity taking into account the number of vehicles (accumulation) in a zone, 

the zone’s average speed and congestion conditions (Geroliminis and Daganzo, 2008). 

The context for the application of the proposed modeling approach is a city divided into zones, 

which are grouped into regions taking into account their travel patterns and traffic characteristics. 

Trips between each pair of zones can be made either by car (for people who can use this mode) 

or by bus, or not made at all if (generalized) travel costs are considered too high by the traveler. 

Modal choice in the city is described by two logit models. The first describes the behavior of 

people who cannot use a car, and distinguishes the transit and the non-travel modes. The second 

is a nested model that applies to people who can use a car. The first level of this model 

distinguishes between car, transit and non-travel choices, and the second level, which only 

concerns car users, relates to parking options. Specifically, it distinguishes between parking in the 

desired destination zone and in nearby zones, and between free and paid parking. For both logit 

models, choices depend on the travel costs of both modes. In the case of car, these costs consist 

of vehicle depreciation and maintenance costs, fuel costs, maintenance costs, walking costs, 

cruising for parking costs (if parking is free) and parking fees (if parking is paid). In the case of 

transit, fares, time costs, access costs, and discomfort costs are taken into account. 

The objective function of the proposed optimization model aims at maximizing the net revenues 

made from transit and parking (R), being written as follows: 

𝑅 =∑∑𝑞𝑜𝑑
𝐴 (𝑝𝑑

𝐴 − 𝐶𝑑
𝐴) +

𝑑∈𝑍𝑜∈𝑍

∑∑𝑞𝑜𝑑
𝐵 (𝑝𝑜𝑑

𝐵 − 𝐶𝑜𝑑
𝐵 )

𝑑∈𝑍𝑜∈𝑍

 



where Z is the number of city zones; qA
od is the number of car trips between zones o and d (that 

need to pay for parking); pA
d is the parking fee in zone d; CA

d is the unit parking supply cost in 

zone d; qB
od is the number of transit trips between zones o and d; pB

od is the transit fare for trips 

between zones o and d; CB
od is the unit transit supply cost between zones o and d. 

The decision variables of the model are the number of car and transit trips (which are related to 

the supply levels for parking and transit), the parking fees, and the transit fares. With respect to 

parking, fees are applied in a zone if and only if the number of cars willing to park there exceeds 

a given proportion of the zone’s total parking capacity. In the case of transit, the OD zones of the 

city are grouped into transit zones defined according to OD pairs; that is, the amounts paid by 

transit users depend on the origin and destination of their trips. 

The MFD dynamics model is embedded in the optimization model in order to determine the 

system dynamics according to speeds, congestion and cruising for parking costs taking into 

account the demand for car trips. In this model, a unimodal, continuous and concave MFD 

function is considered to relate traffic flow, traffic density and speed for each region (set of zones 

with similar traffic characteristics). These functions are estimated for each region taking into 

account characteristics of the road network such as free flow speed, jam density and congested 

wave speed, and how this network is influenced by the transit network. Two different time frames 

are considered in this MFD model, one to update the modal shares according to their generalized 

costs and the zone-based routes followed by car drivers for each OD-pair, and the other to set the 

different speeds, congestion and cruising for parking effects based on the MFD functions. Three 

levels of heterogeneity are created in this model to accommodate route choice, mode choice, 

estimation of the average speed for each OD trip and parking choices. The first level takes into 

account the car route followed by each car user according to OD pairs and departure time periods, 

where the choice lies on the least cost route that travelers might followed. The accumulation and 

flows given by this level are then used to upgrade the dynamics of the network for the zone level. 

This second level is used to relate the flow with parking capacity, allowing to achieve the levels 

of cruising for parking according to the vacant free parking places and the demand assigned to 

them. In this level, aspects linked to the direction followed by users is also considered so that the 

characteristics of a two-way network are also included and dealt with in the third level of the 

model. This last level is the one where the MFD function is applied. Taking into account the flows 

and the cruising for parking in each zone, the connection between each zone and region is now 

considered to integrate the MFD function and determine the speed (which includes congestion 

aspects) for each zone allowing to estimate the expected generalized travel costs for each user. 

The solutions to the optimization model (where the MFD traffic model is embedded) are 

calculated through hybrid simulated annealing and cross entropy SA-CE algorithm, as the model 

is too complex to be solved through mathematical programming methods. 

We illustrate the results that can be obtained through the model with an application to a 

hypothetical two-region, 25-zone city inspired on midsize cities in Portugal (Figure 1). According 

to the best solution found through the SA-CE, the parking fee and the transit fare for this city 

should be 3€/hour and 1.75€/trip, respectively. As shown in Table 1, this would lead to a positive 

net revenue of about 35.52 103€ if parking and transit are managed together, and to modal shares 

for car and transit of 61% and 39%. The table also shows that, if the parking fee is increased, the 

number of trips made by car decreases and the average speed increases. The change of speed over 

the period under analysis obtained through the MFD model can be seen in Figure 2.  

 



 

Figure 1 - Hypothetical two-region twenty-five-zone city 

Table 1 – Key performance indicators for different parking fees and transit fares 

 

 

 

Figure 2 - Car speed in Region 1 of the hypothetical city with a parking fee of 3€ and a transit fare of 1.75€.  

 

The proposed integrated transit-parking planning model provides a good understanding of how 

pricing schemes affect the city mobility dynamics. It is also able to provide insights into how the 

Parking Transit Total Free parking Paid parking Total

3.25 1.25 17.03 -25.97 -8.94 147.94 18.57 166.51 125.45 26.05

3.50 1.25 15.85 -25.58 -9.73 149.35 16.66 166.01 125.77 26.05

3.00 1.25 17.91 -26.46 -8.55 146.53 20.69 167.22 125.06 26.07

3.25 1.50 18.32 -3.77 14.55 151.85 19.14 170.99 119.34 25.81

3.25 1.00 16.20 -51.11 -34.91 143.95 18.21 162.16 131.67 26.29

3.00 1.75 20.28 15.24 35.52 154.11 21.82 175.93 113.16 25.57
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deficits of a transit system can be coped with by managing transit fares and parking fees while 

ensuring reasonable levels of service. Furthermore, aspects such as congestion, parking capacity 

or transit system supply can also be positively affected by adjusting transit fares and parking fees. 
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Abstract 

Ride-sourcing services have become increasingly important in meeting travel needs in metropolitan areas. However, the cruising of vacant ride-

sourcing vehicles generates additional traffic demand that may worsen traffic conditions. This paper investigates the allocation of a certain portion of 

road space to on-street parking for vacant ride-sourcing vehicles. A macroscopic conceptual framework is developed to capture the trade-off between 

capacity loss and the reduction of cruising. Considering a hypothetical matching mechanism adopted by the platform, we further materialize the 

framework and then apply it to study the interactions between the ride-sourcing system and parking provision under various market structures. 

Keywords: Ride-sourcing services; Cruising; Parking; Matching; Parking provision  

Extended Abstract 

1. Introduction 

The proliferation of smartphones in recent years has catalyzed rapid growth of ride-sourcing services (also known as transportation 

network companies or TNCs) such as Uber and Lyft (Rayle et al., 2016). By requesting rides via mobile applications, customers of 

these ride-sourcing services are matched efficiently to affiliated drivers who drive their own non-commercial vehicles to provide for-

hire rides. Such on-demand e-hailing services significantly reduce the search frictions and bring together riders and drivers with very 

low transaction costs (Anderson, 2014; He and Shen, 2015; Wang et al., 2016). As an evidence for the rapid expansion of ride-sourcing 

services, the number of active drivers on Uber increased exponentially in the U.S. from almost zero in 2012 to over 160,000 in 2014 

(Hall and Krueger, 2015), and globally passed over the one-millionth landmark in 2015 (Lazo, 2015). According to a recent travel 

survey (the San Francisco Municipal Transportation Agency, 2015), ride-sourcing services have been used by 23% of residents in the 

San Francisco Bay Area at least monthly. Among the travel mode share in San Francisco, ride-souring services account for 2%. In 

comparison, the traditional taxi’s mode share has declined to be less than 0.5%.  

However, the great success of ride-sourcing services imposes a considerable vehicular travel demand to urban road systems, 

especially for the centralized downtown area. Since there are only a limited number of spaces in downtown areas for ride-sourcing 

vehicles (RVs) to park, vacant RVs can only cruise on roads while waiting to be matched with the next customer. In a road network 

filled with RVs, e.g., the San Francisco downtown area served by many Uber or Lyft vehicles, such cruising contributes additional 

traffic demand and slows down other traffic, making already-congested streets even worse. Such a phenomenon is expected to become 

much more severe when emerging shared-use mobility services play a major role in meeting travel needs in metropolitan areas. One 

intuitive solution is to segment a certain portion of road space to provide on-street parking for RVs to reduce cruising; however, such 

a plan also reduces road capacity and possibly yields more congestion. The research question is therefore how to find appropriate 

balance to determine the optimal provision of parking spaces for a given road network. To answer such a “big picture” question 

(Daganzo et al., 2012) or make a “sketchy decision” at a highly aggregated level (Nie et al., 2016), this paper develops a macroscopic 

modeling framework that uses only a few parameters but attempts to capture the major underlying mechanisms of the ride-sourcing 

system under parking provision.  

In summary, focusing on aggregate behaviors in an e-hailing ride-sourcing system, this paper aims to propose an effective 

macroscopic modeling framework to describe the operations of the system and capture the impacts of parking provisions. A conceptual 

framework is firstly established integrating components concerning each aspect of a ride-sourcing system. We then employ a deductive 

approach to further develop the framework based on a simplified matching mechanism between RVs and customers. The derived model 

is applied to formulate the optimal parking provision strategies as mathematical programs. Numerical experiments are generated to 

compare the properties and performance of ride-sourcing systems and the corresponding parking provision strategies under two 

different market structures. 
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2. A Conceptual Framework for E-hailing Ride-Sourcing Systems 

We consider an e-hailing ride-sourcing system operating under the provision of 

dedicated parking spaces to RVs. In the system, after serving a customer, an RV starts 

searching for an empty parking space (shown as Fig. 1). The process terminates with the 

RV either successfully finding a parking space or being matched to a waiting customer by 

an online platform. More specifically, if a new dispatch order arrives before the RV 

finding an open parking space, it stops parking search and starts serving the customer; 

otherwise, the RV will cruise until finding a vacant space, and then park there and wait 

for the next dispatch.  

To facilitate the presentation, we decompose the framework into six components 

including three processes and three characteristic functions. The three processes capture 

respectively the aggregate matching between waiting RVs and customers, the meeting of 

matched RVs and customers, and the search for empty parking spaces by cruising RVs. 

The first characteristic function is the customer demand function relating the customer 

hourly arrival rate to the average cost perceived for each trip. The second one implies the 

RV fleets conservation. And the third characteristic function delineates the relationship 

between the system’s average speed and density under a network or macroscopic 

fundamental diagram (e.g., Mahmassani et al., 1984; Geroliminis and Daganzo, 2008). 

The following presents each component. A complete notation list is included in Appendix 

A of this paper. 

2.1. Online matching process of unmatched RVs versus customers 

An aggregate matching function can be used to characterize the online matching 

frictions between unmatched RVs and customers (e.g., Douglas, 1972). To capture the 

competition among drivers and customers, we apply the following matching function 

suggested by Yang and Yang (2011):  

𝑚𝑐−𝑡 = 𝑀𝑐(𝐽𝑢, 𝑁𝑢)  

where 𝑚𝑐−𝑡 represents the rate of matchings per hour; 𝐽𝑢 and 𝑁𝑢 denote the number of unmatched customers and RVs, respectively.  

2.2. Meeting process of matched RVs versus customers 

After the online match, the time before the physical meeting, denoted as 𝑤𝑚 , is identical for the matched RV and customer. 

Intuitively, the average meeting distance 𝑟𝑚 is a function of the densities of both unmatched RVs and customers. Assuming the total 

area served by RVs is constant, we have:  

𝑤𝑚 ⋅ 𝑣 = 𝐷𝑚(𝐽𝑢 , 𝑁𝑢)  

where the function 𝐷𝑚 depends on the specific matching mechanism adopted by the online platform, and 𝑣 denotes the average network 

running speed. 

2.3. Search process of cruising RVs versus vacant parking spaces 

The search process of cruising RVs for vacant parking spaces can be aggregately viewed as another matching process:  

𝑚𝑝−𝑡 = 𝑀𝑝(𝐾𝑣 , 𝑁𝑐 , 𝑣, 𝑤𝑡)   

where 𝑚𝑝−𝑡 is the rate of matchings per hour; 𝐾𝑣 is the number of vacant parking spaces; 𝑁𝑐 is the number of cruising RVs; and 𝑤𝑡  

is average waiting time for an RV to be matched with a customer. Different from online matching, the friction for a cruising RV to 

meet with a vacant parking space also depends on travel time between them (and thus the network running speed 𝑣) (Liu and 

Geroliminis, 2016). Moreover, the parking search process can be terminated if the RV gets matched first and thus the matching rate of 

parking 𝑚𝑝−𝑡  will depend on how quickly the online customer matching can take place, i.e., 𝑤𝑡 . 

Figure 1. The workflow of an RV with e-hailing 
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2.4. Customer demand function 

Let 𝑄 denote customer demand per hour and 𝑤𝑐  be the average waiting time for customers getting matched; 𝐿𝑡 , 𝐹  and 𝐶 are the 

travel distance, fare and total monetary cost for each trip, respectively. Define 𝛽 and 𝛾 respectively as the out-of-vehicle and in-vehicle 

value of time ($/h). Then, the customer demand 𝑄 is given as a monotonically decreasing function of the total trip cost, i.e. 

𝑄 = 𝑓 (𝐹 + 𝛽(𝑤𝑐 + 𝑤𝑚) + 𝛾
𝐿𝑡

𝑣
), where 𝑓′ < 0. 

2.5. Fleet size conservation 

The conservation of RV fleets requires 

𝑁 = 𝑁𝑢 + 𝑁𝑚 + 𝑁𝑜  

where 𝑁 denotes the total RV fleet size; 𝑁𝑢 , 𝑁𝑚 and 𝑁𝑜 respectively represent the instantaneous number of RVs under matching, 

meeting and serving processes. 

2.6. Speed versus density 

Instead of assuming a constant travel time, this study applies a macroscopic or network fundamental diagram to relate the average 

running speed with the average vehicular density within the network. Denote 𝑁𝑝, 𝑁𝑏 respectively as the number of parked RVs and 

background vehicles, then 𝑁 − 𝑁𝑝 + 𝑁𝑏 represents the total number of running vehicles within the network. Then, let the constants 𝑘𝑗  

and 𝐴𝑢 respectively indicate the jam density and the total utilizable area for roads and curbside parking. And denote variable 𝐾 as the 

total number of parking spaces. Assuming 𝑘𝑗  is also identical to the density in a fully-occupied parking lot, we have the term 𝑘𝑗𝐴𝑢 − 𝐾 

equals to the effective road spaces for running vehicles. 

By replacing the density with the division of the number of vehicles over road spaces, the network speed-density relation can thus 

be written as, 

𝑣 = 𝑉 (
𝑁−𝑁𝑝+𝑁𝑏

𝑘𝑗𝐴𝑢−𝐾
), where 𝑁𝑏 = 𝑔 (

𝐿𝑏

𝑣
) ⋅

𝐿𝑏 

𝑣
 and 𝑉′ , 𝑔′ < 0. 

The constant 𝐿𝑏 denotes the average travel distance of the background traffic, while the function 𝑔 relates background traffic demand 

with the average travel time cost. 

2.7. Stationary states of a ride-sourcing system under parking provision 

By integrating the aforementioned six decomposed components and substituting all the excessive variables therein with their 

equivalences under the stationary condition, we establish a conceptual framework (shown as the second column in Table 1) for a ride-

sourcing system under parking provision. This conceptual framework is flexible enough to model systems under various operating 

mechanisms and conditions. 

In this study, to facilitate the investigation of interactions between e-hailing ride-sourcing and parking systems, a simplified 

matching mechanism is introduced to analytically establish the relationships between variables in the matching processes. 

Subsequently, a deductive realization of the conceptual framework is further derived (shown as the third column in Table 1), and then 

applied to examine the parking provision strategies in different scenarios. 

Table 1. Summary of conceptual framework and its deductive realization 

Ride-sourcing System (⋇) Conceptual Framework Deductive Realization 

Online Matching 𝑄 = 𝑀𝑐(𝑤𝑐𝑄,  𝑤𝑡𝑄)  𝑤𝑡 =
𝜏

1−exp(−
𝑤𝑐

𝑤𝑡)
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Meeting Distance 𝑤𝑚 ⋅ 𝑣 = 𝐷𝑚(𝑤𝑐𝑄, 𝑤𝑡𝑄)  𝑤𝑚 ⋅ 𝑣 =
𝜇⋅[

1

2
√

𝐴𝑤
𝑄𝑤𝑐⋅erf(√𝑤𝑐

𝑤𝑡)−
1

√𝜋
√

𝐴𝑤
𝑄𝑤𝑡 ⋅exp(−

𝑤𝑐

𝑤𝑡)]

1−exp(−
𝑤𝑐

𝑤𝑡) 
   

Parking Search 
𝑁𝑝

𝑤𝑡
= 𝑀𝑝(𝐾 − 𝑁𝑝, 𝑄𝑤𝑡 − 𝑁𝑝, 𝑤𝑡 , 𝑣)   𝑄 ⋅ 𝑤𝑡 2

= 𝑁𝑝 ⋅ (𝑤𝑡 +
𝐿𝑟

(𝐾−𝑁𝑝)⋅𝑣
)  

Fleet Conservation 𝑁 = 𝑄 ⋅ (𝑤𝑡 + 𝑤𝑚 +
𝐿𝑡

𝑣
)  𝑁 = 𝑄 ⋅ (𝑤𝑡 + 𝑤𝑚 +

𝐿𝑡

𝑣
)  

Demand Function 𝑄 = 𝑓 (𝐹 + 𝛽(𝑤𝑐 + 𝑤𝑚) + 𝛾
𝐿𝑡

𝑣
)  𝑄 = 𝑄0 ⋅ exp [−𝜅 (𝐹 + 𝛽(𝑤𝑐 + 𝑤𝑚) + 𝛾

𝐿𝑡

𝑣
)]  

Speed-Density Relation 𝑣 = 𝑉 (
𝑁−𝑁𝑝+𝑔(

𝐿𝑏
𝑣

)⋅
𝐿𝑏 

𝑣

𝑘𝑗𝐴𝑢−𝐾
)  𝑣 = 𝑣𝑓 ⋅ (1 −

𝑁−𝑁𝑝+𝑄𝑏
0⋅exp(−𝜅𝑏⋅

𝐿𝑏
𝑣

)⋅
𝐿𝑏
𝑣

𝑘𝑗𝐴𝑢−𝐾
)  

 

We use the label (⋇) to represent the entire nonlinear modeling system. Within Sys. (⋇), there are nine unknowns in total, i.e., the 

customer and RV waiting time for getting matched 𝑤𝑐 and 𝑤𝑡, the meeting time after being matched 𝑤𝑚, the number of parked RVs 

𝑁𝑝, the customer demand 𝑄, the network average speed 𝑣, the fare 𝐹, the total fleet size 𝑁 and the total number of parking spaces 𝐾. 

If the latter three variables are specified by stakeholders, e.g., a government agency determines the parking provision 𝐾 while a ride-

sourcing service provider decides its price 𝐹  and fleet size 𝑁 , the solution to the nonlinear system prescribes an estimate of the 

performance for the ride-sourcing system and road network. 

2.8. Numerical example for impacts of parking provision 

In this numerical example, we consider a Manhattan-like area of 20 square miles served by 50,000 RVs. The average trip distance 

of ride-sourcing orders is 2.5 miles, and each trip on average costs $15. Other parameters used in the example can be found in Appendix 

A. We then vary the number of parking spaces 𝐾 in the area and investigate its impacts on system performance by solving the deductive 

model. Figure 2 displays the changes of two performance measures, including the realized hourly ride-sourcing and background traffic 

demand 𝑄 and 𝑄𝑏 (Fig. 2a) and the network average speed 𝑣 (Fig. 2b). Both figures present a clear trade-off between the reduction of 

cruising and capacity drop caused by the allocation of road space to parking. As shown in the figures, the average speed 𝑣 and customer 

serving rate 𝑄 increase initially and peak at the parking supply 𝐾 being approximately 3.8×104, then decrease. This suggests that 𝐾 =
3.8×104 is a threshold where the system performance improves with respect to the increase in parking provision on the left side and 

gets worse on the right side. 

Interestingly, Figure 2a shows that under a fixed fare and RV supply, parking provision imposes the same effect on the demand for 

ride-sourcing services and the background traffic. While better traffic condition will undoubtedly benefit the background traffic, 

reduced trip-serving time for a ride-sourcing system also means less travel cost for customers and higher demand to serve for drivers. 

 

Figure 2. The impacts of the parking provision on the ride-sourcing system 
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3. Time-Varying Optimal Parking Provision  

Based on the modeling system (⋇), we investigate the optimal parking provision for the ride-sourcing market. Two market structures 

are compared in this paper: 1) a system optimum case, where the government controls the fare 𝐹, the RV fleet size 𝑁 and the parking 

spaces 𝐾 to maximize the social benefit; 2) a monopoly case, where a private ride-sourcing company controls the fare 𝐹 and the fleet 

size 𝑁 to maximize its revenue, while the government only determines the size of parking spaces 𝐾 to maximize the social benefit. 

Ride-sourcing companies do not own the fleets themselves, but offer online matching services for those RVs/drivers registered to 

their platform. Thus, the fleet size in service 𝑁 is endogenously determined depending on the real-time market condition. Nevertheless, 

the commission fee charged by the ride-sourcing company empowers it to indirectly control the number of vehicles in service. Denote 

𝐹𝑐 as the commission fee that drivers pay to the ride-sourcing company for each order or transaction. Then, the total hourly profit for 

the ride-sourcing company and RV drivers, respectively denoted as Π𝑐  and Π𝑑 , can be calculated as 

Π𝑐 = (𝐹𝑐 − 𝑐𝑝) ⋅ 𝑄  

Π𝑑 = (𝐹 − 𝐹𝑐) ⋅ 𝑄 − (𝑐𝑣𝑁 − 𝑐𝑠𝑁𝑝)  

where 𝑐𝑝 is the unit-order operation cost of the e-hailing platform; 𝑐𝑣 represents the hourly cost of operating a running RV; 𝑐𝑠 denotes 

the hourly savings for a single parked RV. The term 𝑐𝑣𝑁 − 𝑐𝑠𝑁𝑝 above represents the total hourly expenses for RV drivers operating 

their vehicles. Combined with the customers’ benefits, the hourly social benefits 𝑆 can be formulated as: 

𝑆 = ∫ 𝑓−1(𝜔|𝑄0)𝑑𝜔
𝑄

0
− 𝑄 [𝛽(𝑤𝑐 + 𝑤𝑚) + 𝛾

𝐿𝑡

𝑣
] − (𝑐𝑝𝑄 + 𝑐𝑣𝑁 − 𝑐𝑠𝑁𝑝) + 𝑐𝑏 [∫ 𝑔−1(𝜔|𝑄𝑏

0)𝑑𝜔
𝑄𝑏

0
− 𝑄𝑏 𝐿𝑏

𝑣
]  

where 𝑐𝑏  denotes the hourly cost for each vehicle and its passengers in the background traffic. The first integral term represents 

consumers’ surplus; the second and third terms respectively indicate the total hourly time costs for customers and operational expenses 

of the ride-sourcing system; the last term represents the total benefit of travelers in background traffic. 

Assume the labor market of drivers is perfectly competitive and the RV supply 𝑁 is realized at a level such that Π𝑑 = 0. Then, the 

system optimum (SO) case of the ride-sourcing market solves the nonlinear optimization model below: 

max{𝑆|𝐹, 𝑁, 𝐾 ≥ 0; Πd = 0;  Sys. (⋇)}  

And the monopoly (MP) case solves the following bi-level program: 

max{𝑆|𝐾 ≥ 0; (𝐹∗, 𝑁∗) = argmax{Π𝑐|𝐹, 𝐹𝑐 ≥ 0; Π𝑑 = 0;  Sys. (⋇)}}  

 

4. Major Findings 

Comprehensive numerical experiments are conducted to compare the parking provision strategies and their impacts under the above 

two market structures. It is evident that a time-varying optimal parking provision can balance between reduction of cruising for RVs 

and capacity drop of a road system. Here, we highlight two major findings regarding the parking provision strategies for the 

government: 

• For non-peak hours, the optimal number of parking spaces is inversely proportional to the instantaneous customer demand. No 

space is needed for peak hours with demand surge. The company under both SO and MP raises the fare and commission fee at peak 

hours, then lowers them to encourage ridership when demand drops. The system during peak hours behaves like a seller’s market 

where RVs receive an instant match while customers endure longer waiting times; conversely, at non-peak hours, the system 

switches to a buyer’s market and RVs must wait. Thus, the need for parking spaces considerably increases for non-peak hours, 

especially after midnight.  

• Even though there are fewer RVs in service under the monopoly scenario, a larger supply of parking spaces should be provided as 

compared to the system optimal case. Because the customer demand under MP shrinks even more than the vehicle supply in 

comparison to SO, the customer’s waiting time for online matching 𝑤𝑐  is shorter. Moreover, since the network average speed 𝑣 is 

mostly higher under MP, the service time is also much less. Consequently, the customers in MP can enjoy a better level of service 

but with a higher fare, while the longer waiting time of RVs in MP yields a greater need for parking spaces. 
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Appendix A. Nomenclature 

A.1. System state variables 

Notation Interpretation 

𝐹 Trip fare for an average distance 𝐿𝑡 ($) 

𝑁 RV fleet size 

𝐾 Number of provided parking spaces 

𝑤𝑐 Average customer waiting time for getting matched (h) 

𝑤𝑡  Average RV waiting time for getting matched (h) 

𝑤𝑚  Average meeting time for customers and RVs after being matched (h) 

𝑁𝑝 Number of parked RVs 

𝑄 Hourly ride-sourcing customer demand 

𝒗 Average network travel speed (mph) 

A.2. Other state variables 

Notation Interpretation 

𝑚𝑐−𝑡 Hourly matching rate between unmatched customers and RVs 

𝐽𝑢, 𝐽𝑑
𝑢 Total number and density of unmatched customers 

𝑁𝑢 , 𝑁𝑑
𝑢 Total number and density of unmatched RVs 

𝑚𝑝−𝑡 Hourly matching rate between cruising RVs and vacant parking spaces 

𝐾𝑣 Number of vacant parking spaces 

𝑁𝑐 Number of cruising RVs 

𝑁𝑏 Number of vehicles in background traffic 

𝑆 Total social benefits ($) 

Π Total profit of ride-sourcing company/drivers ($) 

𝐹𝑐 Commission fee that the ride-sourcing company charged per order 

A.3. Parameters and their default values in the numerical examples 

Notation Interpretation Default Value 

𝜏 Interval of matching steps (h) 3×10−3 

𝐴𝑤 Area of the whole region under RV service (mi2) 20 

𝐿𝑟 Total length of the road system (mi) 500 

𝜇 Parameter adjusts Euclidean distance to Manhattan distance √𝜋 2⁄  

𝑄0 Potential ride-sourcing customer demand per hour 1.5×107 

𝑄𝑏
0 Potential background traffic demand per hour 1.5×107 

𝜅 Demand sensitivity parameter for ride-sourcing services (1/$) 0.25 

𝜅𝑏 Demand sensitivity parameter for background traffic (1/h) 1 

𝛽 Out-of-vehicle value of time ($/h)  40 

𝛾 In-vehicle value of time ($/h) 20 

𝑣𝑓 Free-flow travel speed (mi/h) 30 

𝑘𝑗  Jam density (veh/mi ⋅ lane) 250 
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𝐴𝑢 Total utilizable area for roads and parking facilities (lane⋅mi) 2000 

𝐿𝑏 Average travel distance in background traffic (mi) 5 

𝐿𝑡 Average distance of trips served by ride-sourcing services (mi) 2.5 

𝑐𝑏 Hourly cost for each single vehicle and its passengers in background traffic ($)  30 

𝑐𝑝  Operational cost for the e-hailing platform per order ($) 2 

𝑐𝑣 Hourly operational cost for a running RV ($) 25 

𝑐𝑠 Hourly savings for a single parked RV ($) 10 
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Introduction 

Urban freight distribution and traffic congestion are two sides of the same coin. In fact, it is well known 
that urban freight movements have a negative impact on the transportation network. Besides safety and 
environmental externalities, trucks generate congestion because of their lower speed, their reduced 
maneuverability, and their frequent stops for deliveries (Dablanc, 2007). Conversely, high levels of traffic 
delay truck deliveries and compromise the performance and reliability of freight distribution, ultimately 
increasing the overall costs of the carriers (McKinnon, 1999). 

During the last decade, technologic improvements in wireless communication, computational and sensing 
technologies, have paved the way to a series of applications aimed at providing a more efficient 
transportation system (e.g. dynamic route guidance, real time traffic management, and electronic toll 
collection) labeled as Intelligent Transportation Systems (ITS). Moreover, automobile and hi-tech 
companies have made significant progress in computerizing vehicles. While the potential benefits of these 
strategies and technologies have often been praised for passenger transportation, very little is known 
about their applications and impact in the area of freight transportation. 

Real time traffic management (TM) represents a relatively straightforward solution to optimize the usage 
of available network space without requiring significant infrastructure investments. Perhaps the most 
challenging tasks to achieve effective solutions, consist in: quickly exchanging communication (inbound 
and outbound); properly modeling the impacts of trucks on traffic flows in urban settings, such as arterial 
roads and local streets; rapidly identifying possible optimization strategies.  

While the first issue can be addressed nowadays by technological advances such as GPS, and wireless 
communications, little research has been done in deriving fast and reliable computational methods to 
describe the effects of this typology of slow vehicles. Microscopic traffic models (car-following) can do 
that very well, but they are usually time consuming and can be difficult to calibrate. In this study, the 
dynamics of traffic is described using the classical Lighthill-Whitham-Richards (LWR) macroscopic 
traffic model. Slow vehicles (such as trucks) that do not behave like the rest of traffic are described as 
“moving bottlenecks”. The moving bottleneck theory has been described for a long time, for example in 
Newell (1993; 1998), Munoz and Daganzo (2002), Leclerq et al. (2004) and Daganzo and Laval, (2005). 
However, simulating multiple moving bottlenecks and their interaction with traffic is complex, since 
bottlenecks both influence and are influenced by the surrounding traffic. To date, no algorithm that can 
endogenously simulate an arbitrary number of moving bottlenecks has been proposed in the literature. 
Our present objective is to show that fast semi-analytic algorithms such as the one proposed by Mazaré et 



al. (2011) can compute the solutions associated with very large numbers of interacting moving 
bottlenecks extremely quickly, and almost exactly. This is extremely useful in the context of logistics, 
since it allows us to quickly solve large-scale optimization problems in which the objective depends on 
both the state of traffic and the trajectories of the trucks 

As a main contribution of this paper we present and evaluate two alternative TM strategies for trucks in 
urban settings based on a macroscopic traffic flow model.  The first one consists in joint coordination of 
traffic lights and trucks departures on an arterial corridor to maximize its throughput. The second one 
consists in a parking-loading curbside management strategy for reducing delays associated with trucks’ 
deliveries. The first strategy could be employed in the surroundings of large urban freight traffic 
generators, such as airports, marine ports and container terminals, but also facilities like shopping malls, 
hospitals, colleges and universities and government offices (Jaller et al., 2015). The second strategy could 
be implemented in locations characterized by a significant number of deliveries like central business 
districts and commercial areas (Nourinejad and Roorda, 2016). In both situations the proposed traffic 
management algorithms would require some degree of vehicle connectivity and positioning (for example 
through GPS), which can be achieved using smartphone apps. 

The optimization problems are solved by using the Memetic Algorithm  (MA) meta-heuristic, an 
extension of the population-based hybrid genetic algorithms (GAs) coupled with a local search procedure 
that allows for refinements of the solutions. While, several applications of genetic algorithm have been 
proposed in the field of traffic control, to the best of our knowledge, MAs have not been utilized yet for 
this typology of problems. This particular technique is particularly suitable to situations where the 
objective function cannot be derived analytically, but only by means of simulations. Furthermore, 
combining an extensive search of the best zones in the search space (exploration) with a more detailed 
search in zones with potential better solutions (exploitation) seems to work well for large problems (Cotta 
2012) and they can often provide better results than other well known approaches like Genetic Algorithm, 
Tabu Search, and Simulated Annealing (Garg, 2010). 

Fast semi-analytical traffic solver 

In traffic flow theory, different typologies of “slow” vehicles (or platoons) can be modeled as moving 
bottlenecks.  These obstructions in traffic streams are usually associated with the presence of buses in 
urban traffic, and trucks or simply slower vehicles on highways. All these situations, indeed, are 
characterized by a partial blockage the road, causing a capacity reduction.  Several studies have 
highlighted the importance of the effects of moving bottlenecks on traffic and have developed 
methodologies to include them into existing traffic models (Gazis and Herman, 1992; Newell, 1993; 
Newell, 1998; Munoz and Daganzo, 2002; Leclerq, 2004; Daganzo and Laval, 2005). The main difficulty 
associated with moving bottlenecks is the fact that moving bottlenecks are following an hybrid ordinary 
differential equation (ODE), which is coupled with the Partial Differential Equation (PDE) corresponding 
to the traffic flow model, making it particularly difficult to solve in the general case (multiple moving 
bottlenecks with complex initial and boundary conditions). 

In this paper, we adopt the model by Simoni and Claudel (2017) who tackle this problem with an efficient 
formulation that compute the parameters associated with moving and fixed bottlenecks without 
computing the complete solution to the LWR model to derive their trajectories and their effects on 
surrounding traffic. Thanks to that, computational times are considerably improved compared to classical 



numerical schemes, without affecting the computational accuracy. The algorithm adopted is conceptually 
illustrated in Figure 1, but additional explanations can be found in Simoni and Claudel (2017). The 
solution approach in a nutshell, is based on the fact that moving bottlenecks can be inactive due to 
presence of congestion (the average speed is lower than the maximum velocity of the moving bottleneck) 
or to lack of traffic (capacity reduction does not affect the flow). In these cases, since traffic downstream 
and upstream the moving bottleneck is not affected, no particular change in the solution is considered. 
Only when the regular traffic is travelling at higher speed and the capacity is not sufficient to allow 
everyone to overtake, the moving bottleneck becomes active. In this case, an internal boundary condition 
is created to account for that. In order to model several active moving bottlenecks with different features, 
interacting with each other, the algorithm uses the inf-morphism property of solutions and the existence 
of domains of influence.  
 
 

 
Figure 1: Overview of the traffic simulation algorithm for multiple moving bottlenecks 

Optimization problems 

Joint coordination of traffic lights and trucks departures problem 

The objective function corresponds to the total outflow, that is, the cumulative number of vehicles at the 
downstream end of the link, 𝑁!. In this problem, the total outflow depends on the entry times of m trucks 
(𝑡!) and the on the signal settings 𝜑! = (𝑐, 𝜙), where 𝑐 and 𝜙 correspond respectively to the cycle time 
length and the green time length of traffic signal j. Each solution corresponds to an array specifying the 
entry times of the trucks, and the cycle length and green time of the traffic light. Hence the problem can 
be expressed as: 

 
max
!!,!!

𝑁!(𝑡!, 𝜑!)   

subject to: 



 
1. 𝑡!,!"# ≤ 𝑡! ≤ 𝑡!,!"#  ∀𝑖 ∈ 𝐼                                   moving bottlenecks’ entry times constraints 

2. 𝜑! 𝑐, 𝜙
𝑐!"# ≤ 𝑐 ≤ 𝑐!"#
𝜙!"# ≤ 𝜙 ≤ 𝜙!"#

       ∀𝑗 ∈ 𝐽                     cycle times and green times constraints 

 
The road stretch studied corresponds to a two-lanes link of 300 meters with a traffic light is situated at the 
downstream end of the link. A time period of 900 s is simulated, during which 5 trucks enter from a 
location upstream the link (which represents the freight traffic generator), each characterized by different 
maximum speed and entry time. 

Parking-loading curbside management strategy 

In this case, the problem is formulated again, as a maximization of total outflow. However, in this case, 
the objective function depends only the delivery locations 𝑑! of trucks j. The available locations for 
deliveries are determined by discretizing the link in “slots” of length l each. Hence, the problem turns into 
a combinatorial optimization problem. Each solution corresponds to a array specifying the delivery 
locations of each truck. No specific constraint is applied, except for the exclusion of already occupied 
locations from the range of available ones when assigning subsequent trucks.  

We investigate this problem on the same road stretch analyzed before and for the same period of time. In 
this case 10 trucks enter at random times and stop at the curbside for a random periods of time between 60 
s and 300 s. 

Memetic Algorithm 

Similarly to GAs, MAs are very flexible as they do not they do not require any knowledge of the gradient 
and they can avoid getting stuck in local optima (Teklu et al., 2007). In addition, MAs are more suitable 
to simulation-based frameworks as derivative-based optimization methods require the knowledge of the 
analytical form of the problem. For these reasons, GAs have been already employed to solve different 
joint traffic control and assignment problems (Foy et al., 1992; Lee and Machemehl, 1998; Yin, 2000; 
Ceylan and Bell, 2004; Teklu et al., 2007). In this study, the MA adopted consists of the following steps: 

Step 0 (Initial Population): Generating a population of n random solutions satisfying the problem 
constraints (if any). The fitness value of each solution (according to the optimization problem) is 
calculated by performing a simulation with the fast algorithm presented in the previous section. 

Step 1 (Parents selection): Parents are chosen by means of the tournament selection procedure, which 
consists in the selection of best performing solutions among a restricted pool of randomly chosen 
solutions from the population 

Step 2 (Breeding): Children are derived by means of a two-point crossover procedure. In case of 
combinatorial optimization, “Order 1 Crossover” is used, which is an ordered crossover method 
applicable where direct swap is not feasible. 

Step 3 (Mutation-Local Search): The traditional mutation operators like swapping or moving some nodes 
are replaced by a local search (LS) procedure LS. The LS scan a series of decision variables and performs 
alternative operations to check whether the solution can be improved. If so, the mutated solution replaces 
the original one. The LS procedure occurs with a certain predefined probability. 



Results 

Table 1: Computational performance of the algorithm for different population sizes (average between 20 tests) in the first 
problem 

 Maximum outflow (veh) Solution improvement (%) Computation time (s) 

Population 20 437 13.1 8.5 
Population 30 439 13.5 12.6 

Population 50 439 13.7 21.6 

 

Table 2: Computational performance of the algorithm for different population sizes (average between 20 tests) in the 
second problem 

 Maximum outflow (veh) Solution improvement (%) Computation time (s) 

Population 20 193.7 12.6 42.7 

Population 30 195.9 13.8 60.6 
Population 50 197.8 15.0 102.0 

 

  
Figure 2: Space-time density diagram representing traffic on the link before and after the optimization in the first 
problem 

  

Figure 3: Space-time density diagram representing traffic on the link before and after the optimization in the second 
problem 
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1 INTRODUCTION 

The proliferation of mobile wireless communication technologies has made possible the connectivity 

between vehicles (V2V), vehicle to infrastructure (V2I) and vehicle to any other agents (V2X) of the 

transportation network environment. The emerging Connected Vehicle (CV) platform based on the 

mobile and wireless technologies has the potential to transform the way people travel while promising to 

be an invaluable real-time data source that can provide information required to estimate traffic conditions 

on a network. Such real-time information -including speed, position, and acceleration- may also be used 

to understand, evaluate, and improve the existing transportation infrastructure in a way that was not 

possible just a few years ago. CV applications reviewed in the literature can be broadly divided into safety 

(1-4), mobility (5-7), environmental (8; 9) and other applications (10-12). However, the ability to 

effectively use the CV data relies on the market penetration rate of CV deployments and the prevailing 

traffic conditions. Therefore, it is imperative to develop a comprehensive simulation-based methodology 

for the accurate estimation of critical transportation performance measures for different market 

penetration rates of the CV technologies under various traffic conditions. Although it is really expensive 

and technologically challenging to conduct field tests for CV applications, such situations can be simply 

simulated using a calibrated traffic simulation network. 

Evaluation of traffic operations under different conditions is a challenging task due to the difficulty in 

modeling drivers’ complex tactical and strategic decision-making process. Clearly, the performance and 

validity of a microscopic traffic simulation model in assessing traffic management strategies under 

disruption scenarios depend on its ability to simulate actual traffic conditions (13) stochastically. The 

fundamental stage in the development and use of traffic simulation models as major prediction and 

decision-making tools is the calibration and validation of the parameters and models that characterize the 

traffic flow, such as lane changing, car following, gap acceptance and route choice (13). Calibration is the 

process of adjusting the simulator to maintain a statistically reasonable correspondence between the 

simulated and the actual traffic conditions and measurements. It is an iterative process until obtaining the 

desired confidence level where the model and its results are suitable for the objective. Validation is the 

final process to evaluate if each element in the model sufficiently simulates actual traffic conditions and 

the overall performance of the model is acceptable (14). The term “calibration” is used in this paper to 

describe the validation and calibration process together in this study. The input for simulation contains 

two essential groups of data (15): 

• Physical Input Data (IS): Volume counts, capacity, and physical roadway features 

• Calibration Parameters (CS): Adjustable components of driver behaviorz 

 : ( , ) | , :S S S sim S S obsS f I C O I C O   (1) 

where 
( , )S Sf I C  = Function specification of the internal models in a simulation system 

SI  = Physical input data observed in the field 

SC  = Set of calibration parameters for a simulation system 

simO  = Simulation output data, given the input data and calibrations 


 
= Acceptable margin of error between simulation outputs 

obsO
 

= Observed field data 

In this study, five adjacent intersections in Brooklyn, NY are selected for the case study. These 

intersections on Jay Street are coded into the simulation network. Figure 1 below shows the location of 

the intersections and the generated traffic simulation model in Simulation of Urban Mobility (SUMO) - 
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an open-source simulation package (16). The model is then calibrated using the ground truth data 

collected for a morning peak period.  

 

Figure 1: The Simulation Network 

Data sources used to calibrate the network include real-time travel time information from online mapping 

services, video recordings of the Jay Street and Fulton Street intersection on different days; the data 

collected by fixed road-side wireless sensors to track vehicles, and manually collected turning movement 

counts. Once the simulation network is calibrated and validated, CV messages can be generated using a 

software called the Trajectory Conversion Algorithm (TCA) built by NYU CitySMART Transportation 

group and Noblis (17; 18). This software is designed to test different scenarios for producing, 

transmitting, and storing CV information. The fundamental contribution of this paper is to illustrate and 

quantify the effects of random incidents on the performance of CV applications using a well-calibrated 

traffic simulation model. The impact of different types of incidents with varying severity and duration on 

critical CV applications will be investigated to understand the effect of incidents on the accuracy of on 

and off line performance measures at various market penetration levels. The results of this simulation 

based study will be reported in the final version of this paper. The following section will briefly explain 

the proposed methodology, calibration efforts and the developed TCA tool for simulating CV messages 

(17).  

 

Figure 2: The Calibration Process 
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2 METHODOLOGY 

2.1 Calibration and Validation of the Simulation Model 

The process of simulation calibration requires adjusting the calibration parameters to minimize the 

difference between the output of the simulation and observed conditions to a predetermined acceptable 

level. Steps involved in building, calibrating and using a microscopic simulation model for scenario are 

shown in Figure 2. 

2.1.1 Data Needs for Calibration 

Traffic speeds, travel times and volumes are required to calibrate the network. In this paper, vehicle 

speeds, headways, and traffic volumes are extracted from video files recorded at the study location. 

Travel times are collected by using web-based real-time traffic resources such as Bing Maps (19) and 

fixed Bluetooth wireless sensors (20; 21) that capture  MAC addresses of mobile devices traveling at the 

study location. The data collection methodology used in this paper integrates real-time sensor data from 

online traffic reporting websites and wireless sensors with historical traffic information gathered from 

video files to generate detailed snapshots of actual traffic conditions. Both data sources are used to build a 

calibrated time-dependent demand matrix for an average workday. This demand matrix is used to 

generate results that closely match real-time traffic conditions. Table 1 below summarizes data sources 

used in the calibration process. 

Table 1: Data used in the Simulation Calibration Process 

Data Type Description 

Travel Time Extracted 5 minute travel times from videos recorded during  a 

typical peak hour period 

Travel Time Collected through Bing Maps API 

Travel Time Collected using wireless sensors deployed at fixed locations 

Events Data Incidents and special events data around the study area 

Turning Counts Turning movement counts extracted from video files  

Traffic Signals Actual Traffic Signal Timings  

Pedestrian Counts Pedestrian counts and the number of jaywalkers extracted from the 

video files 

All of the calibration/validation results including traffic speed, volume and travel time comparisons will 

be reported in the final version of the paper. In addition, as an additional performance measure, vehicle 

headways at the North Bound approach will be compared to the observed headways. After the traffic 

simulation is calibrated to reflect base case conditions, the simulation analyses will be performed for two 

different incident configurations. The comparative results of each scenario with respect to a base scenario 

without incidents will be reported in the final paper. 

2.2 Generating CV Messages with the TCA Software 

The developed open-source the TCA tool is one of the important functionalities of the BSM Data 

Emulator. The TCA can work in an online mode which will generate CV messages while the traffic 

simulation is running, or in an offline mode which will use the simulation outputs and convert them to CV 

messages. Figure 3 graphically illustrates the overall approach for converting vehicle trajectory files to 

CV messages using the offline mode of operation. In this method, vehicle trajectory files reporting 

vehicles’ speed and position every 0.1 seconds are used as inputs to the TCA tool.  
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Figure 3: TCA Software - The Offline Mode of Operation 

Although the existing version of TCA only supports PARAMICS (22) and VISSIM (23), vehicle 

trajectories generated by SUMO can be manipulated to be in the same output format with PARAMICS or 

VISSIM. A python code is written to convert SUMO’s vehicle traces to the PARAMICS format and 

TCA-P offline version (18) is used to generate CV messages. Vehicles in the microscopic simulation can 

be equipped to generate and transmit Probe Data Messages (PDMs), Basic Safety Messages (BSMs), ITS 

Spot messages (SPOT), and/or European Cooperative Awareness Messages (CAM) with the TCA tool 

(24). In the extended abstract, we used only 100% market penetration level BSM messages which are 

generated every 0.1 seconds for analysis. After acquiring CV messages at various market penetration 

levels, transportation measures such as speed and travel time can be calculated using such messages. The 

accuracy of the estimated transportation measures can then be compared to the ground truth data retrieved 

from the simulation itself. In the final version of the paper, we will attempt to quantify the effects of 

different types of incidents on the accuracy of estimations by running the traffic simulation model for 

various scenarios and market penetrations. 

3 EXPERIMENTAL SETUP 

These scenarios are generated to understand the impact of incidents on the accuracy of estimated 

transportation measures using CV messages. 

3.1 Base Scenario 

The base scenario is simulated for the morning peak period from 8AM – 9AM. Simulation statistics are 

generated every 5 minutes for model calibration and validation. Although there are no incidents simulated 

in the base scenario, there are some incident-like events that take place. For example, there is a bus stop 

after the first intersection and buses usually double park for approximately 30-60 seconds to allow 

passengers to get on board. These disturbances as well as pedestrians jaywalking are included in the base 

scenario to reflect real-world daily situations. 3830 pedestrians per hour are observed at the first 

intersection from the video recording, and 21.6% of them are jay-walkers. 
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3.2 Double Parking Scenario 

Two incident scenarios, double parking and work-zone, namely, are setup for testing the accuracy of CV 

applications under different traffic conditions. Double parking is a common phenomenon in urban areas. 

For this scenario, It has been observed that on average, 20 double parking events occur per hour on  a 

section of Jay Street in Brooklyn, NY.  Double parking events are randomly assigned to road sections 

with a mean interval of 180 seconds and mean duration of 190 seconds. It has been observed from the 

videos that 85% of double parking vehicles are passenger cars, 10% of them are vans, and 5% of them are 

light trucks. These observations are coded into the model accordingly.  

3.3 Work-zone Scenario 

Work-zone scenario used information from an existing work zone permit data collected from the New 

York City permit management system (25) that includes work-zone information such as the geo-location, 

permit start/end date, permittee name, and roadway type. Using this real work-zone permit information, a 

work zone scenario – an electric repair case - is simulated. This incident has been observed to affect the 

traffic flow significantly at this section. Vehicle trajectory files are generated for both scenarios and feed 

into the TCA tool.  

4 PRELIMINARY RESULTS AND DISCUSSION 

The TCA tool in the BSM software is only used to generate 100% market penetration rate BSM messages 

in the extended abstract. The format of the generated messages can be seen in Figure 4 below. Although 

100% market penetration rate is used for the initial tests, it is still possible to lose some of the data due to 

the transmission distance of the messages. If messages are not received by other vehicles or road-side 

equipment (RSE), they are lost. The default transmission distance is assumed to be 20 ft. without any 

delays. 

 

Figure 4: The Generated BSM Messages using the TCA Tool 

From the initial simulation tests conducted, it was found out that for a scenario of normal traffic 

conditions speed and travel time estimations are at an accuracy level of approximately 90% or above 

regardless of the level of market penetration. However, these estimations are heavily affected when there 

is an incident. This impact on the accuracy of the transportation measure estimations will be investigated 

with more simulation tests and quantified in the final paper. For example, if the most of the CVs are stuck 

behind the double parking car then, the performance measures that are calculated using the messages 

coming from these connected vehicles are found to be less accurate due to biased spatial distribution of 

the vehicles along the affected roadway section. This is an important problem in terms using CVs as real-

time probes for making real-time decisions to re-route traffic to reduce congestion and warn incoming 

vehicles to reduce the likelihood of secondary accidents.  
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1 Introduction 
Stochastic microscopic simulators are popular tools for estimating the performance of predetermined 

transportation strategies, such as traffic signal control in cities. In many transportation problems, the 

performance measures are highly nonlinear, with no exact analytical expressions available. This is due to 

the numerous interactions between the elements in the problem. As such, simulation becomes a suitable 

way to estimate the performance of a given strategy.  

Furthermore, microscopic simulators track individual vehicles and travelers in the network, with the 

decisions of each traveler being determined by the many disaggregate behavioral models embedded in 

the simulator. For instance, car-following models are used to represent how a driver behaves in response 

to the car in front of him, route choice models determine which route a traveler uses to get from the 

origin to destination, as well as models to describe how a traveler responds to current traffic conditions. 

In addition, since the microscopic simulator tracks every vehicle, it is also possible to obtain estimates of 

vehicle-related performance measures, such as fuel consumption (Osorio and Nanduri, 2015a) and 

emissions (Osorio and Nanduri, 2015b). Coupled with the network supply information, the microscopic 

simulators are able to provide detailed representation of the outcome on the roads. Through the complex 

interactions between travelers’ decisions and infrastructure, the simulators can recreate complex 

emergent phenomena on the macroscopic scale, such as congestion propagation. 

However, the intricate level of detail brings with it its own challenges. Due to the large number of 

interactions between elements in the simulation, there is a high computational cost associated with 

evaluating the simulator. This becomes a major problem for simulation-based optimization (SO) with a 

limited computational budget, especially in high-dimensional problems. 

In this paper, we consider SO problems with continuous, nonlinear and general (eg. non-convex) objective 

functions, where the analytical form is unknown, and constraints with analytical and differentiable 

expressions. There are several model-independent experimental designs (for reviews, see Chen et al., 

2006 and Kleijnen, 2015), which can be used with various metamodels. However, it is also possible to 

make use of available information on the model to design an improved sampling strategy.  

Our past work in the area of SO has focused on the formulation of metamodels, which are analytical 

approximations to the SO objective function. Our focus has been on the formulation of metamodels that 

combine information from analytical network models and from the simulators. In this paper, we propose 

to use information from analytical network models to design an efficient sampling strategy. Such a 



 

 

strategy can be used with any SO algorithm. The sampling strategy uses the analytical approximation of 

the SO objective function as a sampling distribution. The idea is to increase the probability of sampling 

areas in the feasible region, where the analytical network model predicts good performance (i.e., good 

objective function values). This design can be incorporated into a metamodel approach that has shown 

promising results for large-scale simulation-based transportation optimization (Osorio and Chong, 2015). 

In the following section, we describe the problem and proposed sampling method in further detail, and 

present an algorithm framework. In section 3, we discuss the empirical set up used to validate the 

proposed approach. 

 

2 Methodology 

2.1 Problem Formulation 
The objective function for the transportation SO problems can be written as 

min
x∈Ω

𝑓(𝑥, 𝑧; 𝑝) ≡ 𝐸[𝐹(𝑥, 𝑧; 𝑝)] (1) 

where 𝐹 denotes the stochastic performance measure obtained through simulation, 𝑥 represents the 

deterministic decision variable, 𝑧 denotes the endogenous variables and p denotes the deterministic 

exogenous parameters. In this study, we consider a traffic signal control problem, with the average trip 

travel time as the performance measure 𝐹 and the green times of the traffic signal phases as the decision 

variable 𝑥. Then, 𝑧 would account for route choice decisions, departure times etc.; p would account for 

external traffic demand, vehicle attributes, traffic network topology etc.  

Since the objective function 𝑓 has no closed form, we use a metamodel proposed by Osorio and Bierlaire 

(2013) to approximate it. The functional form is given by 

𝑚(𝑥, 𝑦; 𝛼, 𝛽, 𝑞) = 𝛼𝑇(𝑥, 𝑦; 𝑞) + 𝜙(𝑥; 𝛽) (2) 

where 𝑇 is the physical component described by an analytical queueing network model, 𝜙 is the functional 

component, often represented by a quadratic polynomial in 𝑥 with diagonal second-derivative matrix, 𝑦 

are endogenous macroscopic variables, 𝑞 are exogenous macroscopic parameters and 𝛼 and 𝛽 are 

parameters of the metamodel. The functional component 𝜙 can be seen as a local correction term for the 

approximation of the objective function given by 𝑇. 

 

2.2 Queueing Network Model 
The queueing network model used in the physical component of the metamodel combines ideas from 

both urban traffic theory and queueing theory, such that each lane in the network is represented by a 

finite capacity 𝑀/𝑀/1/𝑘 queue. Since the model contains the topology of the entire traffic network, it is 

thus able to function as an analytical global approximation of the objective function. The detailed 

formulation of the model can be found in Osorio and Bierlaire (2009), while a more tractable version for 

large-scale networks can be seen in Osorio and Chong (2015). 

 



 

 

The notation to be used in the queueing model is described below, with the index 𝑖 referring to a given 

queue: 

𝛾𝑖  external arrival rate 

𝜆𝑖
𝑒𝑓𝑓

 effective arrival rate 

𝜇𝑖  service rate 

𝜇𝑖
𝑒𝑓𝑓

 effective service rate (accounts for both service and eventual blocking) 

𝜌𝑖 traffic intensity 

𝜌𝑖
𝑒𝑓𝑓

 effective traffic intensity 

𝑘𝑖 upper bound of the queue length 
𝑁𝑖  total number of vehicles in queue 𝑖 
𝑃(𝑁𝑖 = 𝑘𝑖) probability of queue 𝑖 being full, also known as the blocking or spillback probability 
𝑝𝑖𝑗  transition probability from queue 𝑖 to queue 𝑗 

𝒟𝑖 set of downstream queues of queue 𝑖 

The formulation of the highly tractable queueing network model (Osorio and Chong, 2015) is shown 

below: 

𝜆𝑖
𝑒𝑓𝑓

= 𝛾𝑖(1 − 𝑃(𝑁𝑖 = 𝑘𝑖)) + ∑ 𝑝𝑖𝑗𝜆𝑗
𝑒𝑓𝑓

𝑗  (3a) 

𝜌𝑖
𝑒𝑓𝑓

=
𝜆𝑖

𝑒𝑓𝑓

𝜇𝑖
+ (∑ 𝑝𝑖𝑗𝑃(𝑁𝑗 = 𝑘𝑗)𝑗∈𝒟𝑖

)(∑ 𝜌𝑗
𝑒𝑓𝑓

𝑗∈𝒟𝑖
) (3b)  

𝑃(𝑁𝑖 = 𝑘𝑖) =
1−𝜌𝑖

𝑒𝑓𝑓

1−(𝜌𝑖
𝑒𝑓𝑓

)
𝑘𝑖+1 (𝜌𝑖

𝑒𝑓𝑓
)

𝑘𝑖
 (3c) 

Equation (3a) is a flow conservation equation relating the flow transmission between upstream and 

downstream queues. Equation (3b) defines the effective traffic intensity while accounting for spillback 

resulting from the downstream queues. Equation (3c) provides the expression for the spillback probability 

in terms of 𝜌𝑖
𝑒𝑓𝑓

. We refer the reader to Osorio and Chong (2015) more details on the queueing network 

model.  

The analytical approximation of the average travel time, denoted by 𝑇(𝑥, 𝑦; 𝑞, 𝜃), can then be obtained 

using Little’s Law (Little, 2011) as follows: 

𝑇(𝑥, 𝑦; 𝑞, 𝜃) =
∑ 𝜃𝑖𝐸[𝑁𝑖]𝑖

∑ 𝛾𝑖(1−𝑃(𝑁𝑖=𝑘𝑖))𝑖
 (4) 

where the numerator represents the number of vehicles in the network and the denominator represents 

the average arrival rate to the network, while accounting for blocking. 𝜃𝑖 are link-specific parameters for 

fitting the approximation, which can be thought of as weights indicating the importance of each link in 

determining 𝑇(𝑥, 𝑦; 𝑞, 𝜃). The expected number of vehicles in queue 𝑖 can be expressed in terms of the 

traffic intensity (Osorio and Chong, 2015): 

𝐸[𝑁𝑖] = 𝜌𝑖
𝑒𝑓𝑓

(
1

1−𝜌𝑖
𝑒𝑓𝑓 −

(𝑘𝑖+1)(𝜌𝑖
𝑒𝑓𝑓

)
𝑘𝑖

1−(𝜌
𝑖
𝑒𝑓𝑓

)
𝑘𝑖+1 ) (5) 

 



 

 

2.3 Improved Sampling Method 
The analytical expression for 𝑇(𝑥, 𝑦; 𝑞, 𝜃) can serve as a means to weight the sampling distribution, so as 

to increase the probability of sampling in regions with values of small 𝑓(𝑥, 𝑧; 𝑝). The proposed method 

can be embedded in most SO algorithms.  

At any given iteration 𝑘, when the SO algorithm attempts to pick a new point 𝑥 for sampling, the sampling 

method conducts the following two steps: 

Step 1.  Sample a new point 𝑥 that has a small 𝑓(𝑥, 𝑧; 𝑝) value using a distribution based on 

𝑇(𝑥, 𝑦; 𝑞, 𝜃). 

Step 2.  Improve accuracy of 𝑇(𝑥, 𝑦; 𝑞, 𝜃) by fitting 𝜃𝑖 using simulation observations from the last 

𝑘 − 1 iterations. 

In step 1, we use an inverse transform sampling method to obtain a sampling point 𝑥. Given a uniform 

random vector 𝑈 ∈ ℝ𝑑 such that ∀𝑖, 𝑈𝑖 ∈ [0,1], the point to be sampled is  

𝑥 = 𝐹𝑇
−1(𝑈) (6) 

where 𝐹𝑇(𝑥, 𝑦; 𝑞) is the normalized cumulative sum of 𝑇(𝑥, 𝑦; 𝑞, 𝜃), and 𝑑 is the dimension of the decision 

variable 𝑥. By using the inverse transform sampling method, this effectively weighs the sampling 

distribution more heavily in regions where 𝑇(𝑥, 𝑦; 𝑞, 𝜃) contains minima. Hence, if 𝑇(𝑥, 𝑦; 𝑞, 𝜃) provides 

a good approximation of 𝑓(𝑥, 𝑧; 𝑝), then the computational budget can be used more efficiently to 

potentially find lower minima at a faster pace. 

Since this method is highly contingent on 𝑇(𝑥, 𝑦; 𝑞, 𝜃) being a good approximation of 𝑓(𝑥, 𝑧; 𝑝), step 2 

attempts to parametrically correct the approximation using the data collected from simulation 

observations from the current and past iterations. This can be done by regression, where the parameters 

𝜃𝑖 are fitted at every iteration by solving a least squares problem, similar to that in Osorio and Bierlaire 

(2013). 𝜃𝑖 are assigned to take initial value one, which leads to the initial approximation of the average 

travel time taking on the original form given by Little’s Law. 

 

3    Empirical Analysis 
We evaluate the performance of the proposed sampling method by combining it with several SO 

algorithms as an offline sampling technique, and observing how the speed of convergence is affected 

when compared to a uniform sampling technique. The chosen algorithms include popular general SO 

algorithms, such as genetic algorithms (GA) and the Simultaneous Perturbation Stochastic Approximation 

(SPSA). We also combine it with the metamodel method (Osorio and Bierlaire, 2013) as an iterative 

sampling technique, where it will replace the model improvement step.  

To compare the performances of the SO algorithms, we use a microscopic traffic simulation model of the 

city of Lausanne, Switzerland developed by Dumont and Bert (2006). This model of Lausanne contains 17 

chosen signalized intersections where the signals will be controlled, leading to a total of 99 phase variables 

(ie. 99 dimensions in the decision vector 𝑥). This is considered a large-scale problem in the area of 

simulation optimization. At the same time, we also consider the performance of the sampling method 

under a tight computational budget, such that only a maximum of 150 simulation runs can be carried out. 



 

 

As a second case study, we consider a problem for the city of Lyon, France. The model is a mesoscopic 

simulation instead, containing 266 signalized intersections to be controlled, leading to a total of 800 signal 

phases (Bert, 2016). Hence, this problem has a significantly larger number of dimensions, where we expect 

uniform sampling to be particularly inefficient. 
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ABSTRACT 

In this paper, we explore the dynamical system of route choice and responsive signal control 

in a simulated real-life environment, where (a) the route costs are observed directly from a 

microsimulation model, and (b) drivers’ pre-trip route choices respond to current traffic 

conditions and signal green-times respond to current traffic flow. Queues are explicitly modelled, 

as with queue spill back. We show that the dynamical systems, if well designed, can significantly 

improve network capacity and reduce vehicle delays, as well as lead to desirable route choices.  
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1. BACKGROUND 

Aside from massive road building or network re-structuring, traffic signal control, along with 

pricing control, is one of the few effective tools the city authorities have to manage traffic 

congestion and conflicts. Many traffic signal control systems have been developed and deployed 

around the world; see a review by Shepherd (1994) for these systems.  

Most of these control systems, based on minimising delays for the currently observed traffic 

patterns, assume that travellers’ route-choices do not change. It was first pointed out by Allsop 

(1974) and Gartner (1976) that traffic signals may be used to influence traffic patterns and 

manage travel demand. Fig. 1 shows such interactions.  

 
 
 
 
 
 
 
 
 
 

Fig 1. A dynamical system of route choice and signal control. Here, drivers’ current route-choices change 

current green-times (according to some responsive control policy) and current green-times change current 

delays and hence current flows (according to drivers’ route-choices). The loop is traversed indefinitely. 
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SIGNAL CONTROL 
Current route-flows cause green-

times to change  

ROUTE-CHOICE 
Current green-times give rise to costs 

which cause route flows to change  



The potential for signals to influence route choice becomes much more important when there 

is high congestion; in this case using signal control to deliberately discourage the most 

congestion-causing route-flows and to deliberately encourage congestion-reducing route or mode 

switches may yield substantial benefits. 

Most of the previous studies in traffic routeing and signal control combined are based on 

macroscopic traffic flow models (e.g. Dickson, 1981; Smith, 1979, 1987; Smith et al., 2015). 

Macroscopic traffic models are based on an aggregate notion of traffic flows and travel times on 

links; they cannot represent queue spill back, which is a common feature in congested networks.  

In addition, these theoretical traffic models rely on a priori knowledge of a link- or route-

based flow-cost function. Liu and Smith (2015) show that the sensitivity of future network 

behaviour to the cost functions and control policies utilised. In practice, many factors affect the 

cost functions on a link or along a route. Liu et al (2011) demonstrate the complexity in 

estimating route cost functions, and show that these are affected not only by the flows on that 

route, but also by travel patterns over the wider network.  

Furthermore, modern traffic signals encompass complex signal phases and stages†, where a 

phase may contain a set of turning movements from different links and a stage may include 

several phases. Real-life road network includes lanes with shared traffic turning movements. 

Macroscopic models based on average link flows are not able to represent shared lane traffic to 

distinguish flows and delays by turning movements, and is thus not able to truly represent the 

dynamical system of Fig. 1.  

All these call for dynamic disaggregate traffic modelling to account for traffic queuing and 

blocking back, realistic representation of road networks (e.g. for shared lane traffic) and signal 

plans, as well as drivers short- and long-term route choice responses to signal control. Traffic 

microsimulation models, based on the explicit modelling of individual vehicle trajectories and 

physical queues, offer the potential to overcome the difficulties mentioned above. 

In this paper, we present a large microsimulation model to test some of the newly developed 

dynamical system of Fig. 1, in a within-day dynamic context. Queues are explicitly modelled, as 

with queue spill backs and shared-lane traffic. The model seeks to represent the minute to minute 

decisions of both travellers and signal setting “agents”. Such an agent may represent an engineer 

who periodically resets signals on the basis of data collected over a long or short time-scale or 

may represent an automatic quickly responding traffic control system. In this model, trip-makers 

respond to the prevailing traffic conditions in the network and adjust their route choice 

accordingly before departure.  

                                                
† A signal phase is defined as the sequence of signal indications given to a particular traffic movement or a set of movements. A stage 

is a portion of cycle during which a given combination of movements is given green.  



2. A MICROSIMULATION MODEL OF THE DYNAMICAL SYSTEMS 

We develop a within-day microsimulation model of the dynamical system of Fig. 1, where 

(a) the route costs are observed directly from a microsimulation of individual vehicle trajectories, 

and (b) route flows and green-times are adjusted over time (both within the micro-simulation 

model). Queues are explicitly modelled, as with queue spill back. The model seeks to mimic the 

minute to minute decisions of both travellers and traffic signal operators. We explore the 

dynamical interactions between route-choice and responsive equi-saturation and responsive P0 

signal control policies in this simulated real-life environment. 

The microsimulation platform utilized here is the DRACULA dynamic microsimulation 

model suite, developed at University of Leeds (Liu et al, 2006). At its most detailed level, 

DRACULA represents fully the individual O-D trip-makers, the individuals’ decisions on 

whether to travel on a day, their day-to-day route choice responses to network congestion, and 

individual vehicles’ space-time trajectories as they traverse a network (Liu, 2010).  

In this study, we utilize DRACULA as a within-day dynamic traffic assignment model to 

represent the dynamical responsive signal controls and route choices within a typical peak period, 

with the route congestion experienced by earlier travellers being fed back to later travellers to 

influence their route choice. The dynamical loop of Fig. 1 is updated every few cycles of the 

signal timings (typically a few minutes), where the signal stage times are adjusted according to 

the prevailing traffic congestion on the links approaching the signal, and the route flows (and the 

individual travellers’ route choice probabilities) are adjusted according to the prevailing 

congestions en-route.  

From the simulation, we collect at each time stamp : (i) for each individual trip its location 

(on link and lane) and speed; (ii) for each lane and link the number of vehicles, speeds, and queue 

length; (iii) for each individual signal stage, the signal aspect (e.g. green, red, amber), the number 

of vehicles exited, and their travel time over the previous link.  

From these basic simulation outputs, we then define, at the end of each dynamical system 

response time period ,  registers the number of response iterations,  the following 

aggregated measures: 

  turning flow, defined as the number of vehicles from link  making the turning 
movement , during period ; 

 turning flow cost, defined as the average travel time of the vehicles   on 
link .  

   route exit flow, as the number of vehicles from OD pair , route  which exited 
the network during time period ; and 

    route flow cost, as the average travel times of the vehicles . 

From the above, we calculate the flows and costs for each stage at time : 



          
{ , }~{ , }

( ) ( )nk am
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x t x t   and   
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c t c t     (1) 

     

The above Equations represent the flows and costs felt by those vehicles passed through the 

junction  during stage . By default, if no turning flows are made through this stage during the 

time period, then a zero cost would be registered and no changes will then be made to the stage 

timings for this response time period. 

Taking the above simulated flows and costs by stage, we define for each stage a red-time cost, 

for time period  equi-saturation policy (ES) and the P0 policy (P0): 

( ) ( ) / [ ( )]ES

nk nk nk nkRC t x t s g t                   (2) 

0 ( ) ( )
P

nk nk nkRC t s c t                      (3) 

where nks denotes the saturation flow for stage  at signalised node  and is defined as the 

collection of saturation-flows of all turning movements that belong to that statge as: 

{ , }~{ , }

nk am

a m n k

s s        (4) 

where  denotes that the turning movement  from link  belongs to signal  and 

stage . 

Then the new stage times and new route flows for the next time period are calculated, 

according to the two-commodity dynamical system proposed in Liu and Smith (2015). For 

vehicles which are due to depart during the next response time period , their route 

choice will be determined probabilistically in proportion to the new route flows for that OD pair. 

3. SIMULATION EXPERIMENTS AND ANALISIS 

The simulation experiments were conducted on two networks shown in Fig. 2. Three systems 

are simulated: 

S0:  base case scenario with fixed route flows and fixed green times;  

S1: with dynamical route swaps and responsive equi-satuation policy; and 

S2: with dynamical route swaps and responsive P0 policy. 

We examine the impact of the dynamical systems (S1 and S2) on network performance and 

compare them with those of the base system S0. 

The first network consists of a single OD pairs (from origina A to destination B) and three 

possible routes:  Routes 1 and 2 via node C along links 1-3 and 2-3 respectively, and a direct 

route Route 3 from A to B. Nodes B and C are signal controlled. The three routes have different 

capacities. Link 1 is a single carriageway, links 2 and 3 are dual carriageways with two lanes 

each, whilst link 4 has four lanes. Thus Route 3 has the highest capacity, followed by Route 2, 

while Route 1 has the least capacity. All three routes have the same free-flow travel times. 



 

 

 

Origin Destination

A B

C

Link 4

Link 3

Route 3
 

Fig. 2. Two test networks: (a) a simple schematic three-route network; and (b) a real-life network in the 

City of York. The signalised intersections in both networks are highlighted in red filled circles. 

 

Fig. 3 shows the average trip journey time, under each of the three systems, as the total 

demand for travel increases. It can be seen that systems S1 and S2 with dynamical re-route and 

responsive equi-saturation and the P0 signal controls improve overall network capacity and 

reduce vehicle delays, especially for higher demand. 

 

 

 

 

 

 

 

    

                        Fig. 3. Average trip journey time as a function of demand. 

The second network (Fig. 2b) is based on the morning peak conditions in the western part of 

the City of York, England. The city centre is at the top-right hand corner of the network, reached 

by two major radial routes via the Tadaster Rd from the south and Wetherby Rd from the west. 

Thanet Rd connects the two routes through Acomb Green. The total demand for this network is 

7,130 veh/hr in the morning peak, from a total of 472 OD pairs.  

A 4-hour simulation is conducted for the York network, with a 4-min response period. The 

initial route assignment is from equlibrium assignment, which is also used as the base case. The 

equilibrium assignment results in 79 OD pairs having more than one route assigned. We assume 

that the initial route sets contain all the feasible ones; and that the dynamical re-routing is 

performed only among these existing route sets. Fig. 4 present the simulated results, in terms of 

vehicle delay times (VDT) and total trip distance travelled (D). 

Thanet Rd 

Wetherby Rd 

Acomb 
Green 

Signalised 
junctions 

Tadcaster Rd 



  

Fig. 4. The impact of dynamical systems with responsive equi-saturation and P0 signal control on: (a) 

vehicle delay time, and (b) vehicle km travelled for the York network, compared with the base case. 

It can be seen that system S1 with equi-saturation policy has no significant impact on , 

whilst system S2 with the P0 policy has a significantly lower  throughout. It is worth noting 

that the base network has been calibrated to the real-world traffic condition; that includes the set 

of optimal (fixed-plan) signals in the base case scenraio. It is likely that the signals have been 

designed based on the traditional delay minimisation principle. This could explain the relative 

small impact of the dynamical system S1 on  seen in Fig. 4a.   

Fig. 4b displays the total trip distances completed during each iteration; and it shows that 

system with the P0 control has a significantly increased the trip distances. Combined with the 

results in Fig. 4a, this suggests that the P0 control is effective in swapping traffic from more 

congested shorter rotues, to less congested longer routes. 

Further research will include more extensive examination of combination of signal timing and 

routing advice changes, and in situations when average conditions prevail as well as periods of 

time when there are incidents. 
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1. Introduction and Background 

Double parking (DP) that often negatively affects traffic operations and safety is not a new 

phenomenon on urban streets. Evaluation of double parking impacts can be extremely challenging 

due to the difficulties in collecting data and modeling double parking behavior in a large-scale 

network. In New York City, clearly, there is no existing dataset that can provide an exact number 

of double parking activities. However, several other vast amounts of related temporal and spatial 

data are available citywide. In the light of all these complications, this study presents an enhanced  

data-driven framework that was originally proposed by the authors in a previous article (1) to 

integrate various data sources, such as parking violation tickets, 311 service requests and Twitter, 

to estimate the severity level of double parking in terms of its frequency and duration (Figure 1). 

The estimator uses Random Forests techniques and is proved to have 85% out-of-sample accuracy 

in estimating a combined index of double parking frequency and duration. The outputs from the 

estimator can then be feed into macroscopic or microscopic models as inputs with the goal of 

quantifying their impact on traffic.  

The estimated double parking activities along with existing large scale models, such as 

Manhattan Traffic Model (MTM) that covers more than 800 intersections, creates opportunities to 

evaluate area-wide double parking impacts without other compounding factors. This allows local 

transportation agencies to identify not only the double-parking activity hotspots, but also the 

locations where transportation agencies can obtain the greatest benefits from eliminating double 

parking. Different parking enforcement and management strategies can be tested in the model to 

achieve more sustainable mobility in the study area.  

On the other hand, macroscopic models should also be considered as an alternative 

approach to quantify double parking impacts in terms of lower complexity and computational 

speed compared with microscopic simulation models. 

This paper first estimated the frequency and duration of double parking events using a well-

known machine learning technique namely, Random Forests. Then area-wide double parking 

events are simulated in a large-scale microsimulation model to quantify their traffic impact. Next, 

we study the feasibility of using macroscopic queueing models that incorporate interruptions due 

to double parking instead of complex and computationally very demanding microsimulation 

models specially for large networks.  Finally, the outputs from the both simulation and queueing 

models are used to identify double parking hotspots that need better enforcement or management. 
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*Double Parking Index (DPI) is an indicator that represents the combined severity level of DP frequency and duration. 

Figure 1 Data-driven framework to quantify the impact of double parking 

2. Data Needs for Estimating Network-wide Double Parking Activities 

Intuitively, double parking violation tickets and 311 service requests complaining about 

double parking blocking the traffic are directly related to the actual double parking occurrence, yet 

both of the datasets have their own selection and sampling biases. Supplemental data such as street 

characteristics (i.e. commercial area) and traffic information (i.e. traffic volume) are needed to 

address this issue. Table 1 shows the summary of datasets used in this study. 

 

Table 1 Description of Available Data 

Data Name Length Source Description 

Parking Violations 1 year NYC OpenData* Double parking related violation tickets for 2015 in NYC 

311 Service Requests 6 years NYC OpenData* Double parking related requests from 2010 to 2015 in NYC 

Twitter 3 years Twitter API Geo-located tweets from 2013 to 2015 in Manhattan 

Double parking 

Information  
1-3 days Field Visit 

Peak hour double parking occurrence and duration from field 

visits and real-time cameras. 

Commercial Area - NYC OpenData* Total commercial area for each street in study area 

Hotel Rooms - Hotel Websites Total number of hotel rooms for each street in study are 
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Traffic Volume Varied Field Visit Average peak hour traffic volume for each street in study area 

Curbside Parking Space - Field Visit 
Number of curbside parking spaces during peak hour in study 

area 

Block Length - NYC OpenData* Block length for each street in study area 

*NYC OpenData (2) is the open data portal of New York City that offers access to government-produced data sets. 

 

Besides traditional types of traffic datasets, the increasing use of crowdsourcing social 

media applications, such as Twitter (3), has allowed novel approaches for obtaining extra 

information about human activities. This rich text information can allow us to better understand 

how people react to double parking activities. For example, people complaining about a double-

parked vehicle blocking bike lanes or an ambulance having to double park because the curbside is 

occupied by trucks are both common occurrences in the twitter data. Emotional keywords can also 

provide indications of double parking severity and recurrent occurrence at certain locations. 

 

3. Estimating Impacts of Double Parking  

Microscopic Model 

Manhattan Traffic Model (4) is a combined macroscopic/mesoscopic/microscopic 

simulation model of Manhattan with additional major arterials in the outer boroughs and New 

Jersey (Figure 2). While the macroscopic model disaggregates information from the regional New 

York Best Practices Model (NYBPM) and the mesoscopic model uses dynamic user-equilibrium 

following strict convergence criteria, the microscopic MTM model is a stochastic model based on 

dynamic traffic assignment that covers the street network from 14th Street to 66th Street, river-to-

river. It is the largest, most comprehensive microsimulation model at the tri-state area.  

In this study, a subarea in midtown Manhattan that contains 24 intersections and 36 roads 

are used. Double parking during the AM peak hour (8AM to 9AM) is coded as periodic section 

event that creates random incidents and is placed randomly throughout the street. During the time 

interval specified, the simulation creates single-lane incidents on any lane and position of the 

specified section following the time patterns defined (5). Both the frequency and duration of the 

event can be either fixed or follow a selected distribution (i.e. Normal Distribution). The double-

parking behavior in the model is calibrated (i.e. look ahead distance, passing speed) using the 

observation from multiple videos. Estimated number of Double Parking activities from our 

estimator are applied where no actual counts are available. 

      
Figure 2 MTM model and its primary micro-model area (4) 



4 

 

Macroscopic Model 

Although microscopic simulation models are effective for modeling this kind of extremely detailed 

behaviors, they are usually labor intensive to be developed and calibrated. As an alternative 

approach, macroscopic models can be magnitude of order inexpensive and faster to be developed 

and implemented. However, accuracy of such models need to be carefully validated. This study 

adopted Baykal-Gürsoy and Xiao’s M/M/∞ model (6-10) with modification on vehicle type under 

double parking conditions. An M/M/∞ queueing model represents a system with a Markovian 

arrival rate, a Markov modulated service rates, and an infinite number of servers in the system (7). 

The system in this study is designed with two server states “Failure (F)” or “Normal (N)” to 

illustrate the conditions with or without double parking. Denote E be the set of roadway links in 

the study area, V={P,T} to indicate the vehicle type, where 𝑃 stands for passenger cars and 𝑇 

stands for commercial trucks. When the system experiences interruptions, the average number of 

vehicles on the roadway link 𝑖 can be represented as follow (adopted from (6)): 

𝑁𝑖 =
𝐷𝑖𝐿𝑖

𝑣𝑖
[1 +

∑ 𝑐𝑗𝑓𝑖𝑗𝑗 (1 −
𝑣′

𝑖
𝑣𝑖

)

1
𝑑𝑖
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)],    (i ∈ E, j ∈ V)        (1) 

Subsequently, the average link travel time is: 

𝑡𝑖 =
𝐿𝑖

𝑣𝑖
[1 +

∑ 𝑐𝑗𝑓𝑖𝑗𝑗 (1 −
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)

1
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𝐿𝑖

) (𝑣𝑖 − 𝑣′
𝑖)

𝑣𝑖
𝑑𝑖

+ ∑ 𝑐𝑗𝑓𝑖𝑗𝑗 𝑣′
𝑖 +

𝑣𝑖 − 𝑣′
𝑖

𝐿𝑖

)],    (𝑖 ∈ 𝐸, 𝑗 ∈ 𝑉)           (2) 

Where 𝐿𝑖=length of link i (mile); 𝐷𝑖=hourly traffic demand on link i (veh/h); 𝑓𝑖𝑗=frequency of double parking for 

vehicle type j on link i (events/hour), 𝑑𝑖=average duration time of double parking events on link i (h); v=average 

speed without double parking on link i (mph); and 𝑣′
𝑖= average speed with double parking on link i (mph). 

 

4. Preliminary Findings  

The case study utilized a machine learning technique – Random Forests – to integrate different 

datasets from a variety of sources so that double parking events can be estimated at the street level. 

Instead of fitting the data into a model, machine learning techniques enable the computer to learn 

from the actual data. Random Forests, as one of the most popular and accurate machine learning 

methods that combine many decision tree predictors was used as a classifier to classify double 

parking events into a categorical response variable “Double Parking Index (DPI)” introduced by 

the authors in a previous study (1). Figure 3 shows the estimation results for the study area.  

 
Figure 3 Double Parking Index (DPI) Estimation Results 



5 

 

The output generated by the random forests technique is then fed into a microsimulation 

model to evaluate area-wide double parking impacts. Figure 4 shows the preliminary results of the 

percentage difference in terms of average link travel time with or without double parking. 

Interestingly, although the 8th Avenue has a lower number of double parking events (3-11 

events/link/hr) compared to the 6th Avenue (4-32 events/link/hr), it is more affected by double 

parking. One possible reason can be that majority of the double parking activities on the 6th Avenue 

are passenger cars or taxi drop-offs/pick-ups that have a relatively short duration less than one 

minute. However, the 8th  Avenue has more commericial truck activities that have relatively longer 

durations, and all the traffic are heading to a roundabout (Columbus Circle)  which can be usually 

a traffic bottleneck under saturated traffic conditions. Similar situations can be observed on the 5th 

Avenue and some crosstown streets.  

The results suggest that priority should be given to the streets in dark red when considering 

parking enforcement as it may save more than 20% average travel time in the AM peak for these 

streets. Moreover, by eliminating all of the double parking activities in this subarea may reduce 

average travel time for each vehicle by 77.5 seconds during AM peak hour.  

 
Figure 4 MTM Subarea Results 

In our study, M/M/∞ queueing model is also found to be an effective approach and has the 

potential to be implemented instead of computationally demanding microsimulation models for 

large-scale network. Taking vehicle type into consideration enbles us to improve model 

performance. The full paper will cover more detailed computational results.   

With our novel data-driven integrated framework for estimating the actual frequency of 

double parking, both microscopic or macroscopic models can be utilized to quantify area-wide 

impacts in the presence of double parking. The findings of this study can provide transportation 

agencies with useful insights on identifying locations that will experience the greatest benefits by 

removing problematic double parking. As a result, various parking enforcement and management 

strategies can be planned more effectively.  
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Urban Trajectory Analytics: Day-of-week Movement
Pattern Mining using Tensor Factorization

Jiwon Kim∗ Kianoosh Soltani Naveh∗

1 Introduction

Urban traffic arises from population movement and interaction between different regions of
a city. Understanding movement patterns of various users in a traffic network is a key to
designing and operating effective transport systems. Movements of individual travellers can be
captured by various sensors such as GPS devices, Bluetooth detectors or public transit smart
card systems. Recently, movement trajectory data have been collected at massive scales in
many cities, providing the opportunity to gain insight into network-wide traffic dynamics and
understand how the urban network is used and what changes can be made to improve the overall
performance of traffic in the system.

An important aspect of movement pattern mining is to discover regularity or periodicity in
human mobility patterns. A particular research question addressed in this paper is whether
there exist specific weekly patterns in network-wide movement data and whether we could learn
and build knowledge of typical movement patterns for different days of the week from historical
data. Such knowledge can be applied in predicting future movements and detecting anomalies,
enabling better decision support systems for network planning, fleet management, and real-time
traffic and incident management. To answer this question, this paper proposes a dynamic graph
method that converts trajectory data for a given day into a time series of graph snapshots
and represents aggregated flows between different regions using a compact graph structure.
Using tensor decomposition on dynamic graphs, we obtain spatio-temporal patterns underlying
population movement for any given day. By learning patterns from data that span over six
months, we characterize day-of-week movement patterns and demonstrate that the resulting
patterns can be distinguished by a classifier.

2 Methodology

Fig. 1 shows the overall process for day-of-week movement patterns mining proposed in this
study. It involves three steps: (i) Dynamic Graph Representation, (ii) Feature Extraction
and (iii) Dimensionality Reduction, and Characterization and Classification, each of which is
discussed in more detail in the following subsections.

2.1 Dynamic Graph Representation

Determining how to represent movement data is the critical first step toward successful movement
patterns mining. In order to get better insight into the mass movement patterns, we propose a
graph-based approach that aggregates individual trajectories over space and time and represents

∗University of Queensland

1
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Fig. 1: An overview of data processing and preparation for machine learning.

Fig. 2: Dynamic graph representation of different trajectory data.

the population movement as a dynamic directed weighted graph. Each vertex in the graph
represents one cell, a polygonal region obtained from network partitioning, and each edge of the
graph represents the population flow between regions. The graph is dynamic in that edge weight
varies across different times based on the magnitude of traffic flow that evolves over time.

Representing movement data as a graph has been actively studied in visual analytics [1][5][11].
Inspired by these approaches, our previous work [7] has developed a systematic framework for
dynamic graph representation that combines trajectory data acquisition, network partitioning,
and graph construction. This paper extends [7] to further address different types of trajectory
data, particularly to apply different network partitioning methods to different trajectory types,
namely radius-based and density-based methods, as shown in Fig. 1. To partition a network,
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data points in trajectories are grouped in space to obtain centroids of cells, which are then
used to build a Voronoi diagram to define cell boundaries. The radius-based method aims to
cluster points into equi-sized cells using approaches applied in [7][1], whereas the density-based
method aims to cluster points into areas of higher density using Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) algorithm. The radius-based method is suitable
for trajectories with relatively high spatial resolution (i.e., data points are distributed in space
evenly and densely), while the density-based method is suitable for trajectories with low spatial
resolution (i.e., trajectory sampling points are sparse). This study demonstrates this framework
using two different datasets: bus passenger trajectories constructed from smart card records [7]
and Bluetooth vehicle trajectories obtained from Bluetooth detectors. Fig. 2 illustrates cases of
constructing graphs using these data, where the radius-based partitioning method is used for
the passenger trajectories and the density-based method is used for the Bluetooth trajectories.

Once the network is partitioned into cells, these cells are used to define the vertex set of a flow
graph. Given a fixed set of vertices, graph edges are defined for each time interval separately,
where a directed edge is added from cell i to cell j if at least one trajectory visited from cell i to
cell j, not necessarily consecutively, during the time interval. Edge weight thus represents the
number of trajectories connecting two cells.

2.2 Feature Extraction and Dimensionality Reduction

The dynamic graph representation provides spatio-temporal information about population move-
ment in a compact form when compared to the original set of trajectories. However, using a
dynamic graph with tens or hundreds of vertices introduces a number of challenges when viewed
from machine learning perspective:

1. The population movement graph is a dynamic directed graph. This means for N vertices
representing N different regions in the city, the traffic flow matrix is N2 dimensional.
Additionally, since for any given time t = 1, . . . ,K there is one graph, the overall data is
a N ×N ×K dimensional tensor. For a typical data sample, N = 300,K = 24. This leads
to 3002 × 24 = 2, 160, 000 dimensions.

2. Each vertex may only interact with a few other vertices at a time. This leads to sparse
traffic flow matrix.

3. It is unknown what features should be extracted from dynamic graphs to characterize
different days.

The large number of dimensions and the need for obtaining meaningful feature necessitates
further processing of the data. In fact without dimensionality reduction, attempts to operate on
the data using a desktop computer was slow and not practical. To overcome the dimensionality
problem and to obtain meaningful features, we rely on non-negative tensor decomposition.

Non-negative Tensor Decomposition

Tensors can be considered a generalization of matrices and are useful for representing third
or higher order data. Tensor decomposition which can be interpreted as a generalization of
matrix factorization, is able to reveal latent features in data, while reducing data dimensionality.
Advances in computational tools [3][4][2] has facilitated the increasing application of tensors in
statistics, pattern recognition and machine learning. Recently, increasing number of studies
have applied tensor decomposition in transportation areas. Applications include urban traffic
pattern mining [8][6], missing traffic data completion [9], and short-term traffic prediction [10].
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To understand how tensor decomposition works, a number of definitions must be laid out
first.

Definition 1: Rank-1 tensor : An m-way tensor X ∈ RN1×N2×···×Nm is a rank-1 tensor if it can
be written as an outer product of m vectors. In other words,

X = a(1) ◦ a(2) ◦ · · · ◦ a(m)

Now, tensor decomposition can be defined in the following way.

Definition 2: Rank-R Tensor Decomposition is to approximate a given tensor X by the sum of
R rank-1 tensors as shown below.

X ≈
R∑
i=1

a
(1)
i ◦ a

(2)
i · · · ◦ a

(m)
i

For a third order tensor, we use the following notation.

X ≈
R∑
i=1

ai ◦ bi ◦ ci = [A,B,C]

Matrix A groups together the column vectors ai, matrix B groups together column vector bi,
and similarly matrix C groups together the column vectors ci.

This paper considers a third order tensor, i.e., a N ×N ×K tensor, where its entry at (i, j, t)
represents traffic flow from source cell i to target cell j at time interval t. Tensor decomposition
is defined as an optimization problem.

min ||X − X̂ ||22 (1)

X̂ =

R∑
i=1

ai ◦ bi ◦ ci (2)

In order to make components of tensor decomposition interpretable and meaningful, non-negativity
constraint must be imposed. By doing this, each component can be interpreted as an underlying
spatio-temporal activity that when summed with other components, it can produce an approx-
imation of the original data. In other words, the tensor decomposition results in an ensemble
of spatio-patterns. Additionally, the non-negativity constraint can extract features that have
physical meaning.

In addition to feature extraction, tensor decomposition leads to dimensionality reduction.
If X is a N × N × K tensor, then both A and B are N × R matrices, while C is a K × R
matrix. The total number of entries in A,B,C is (2 × N + K) × R. Since R is often much

smaller than N , this leads to a factor N2×K
(2×N+K)×R reduction in dimensionality. For instance if

N = 300,K = 24, R = 3, the reduction factor is 3002×24
(2×300+24)×3 ≈ 1154.

2.3 Characterization and Classification

The output of tensor decomposition is three matrices AN×R, BN×R, CK×R. Matrices A and B
represent a measure of the interaction between different regions. More specifically, an entry
air of matrix A indicates a measure of how much cell i is acting as a source (upstream cell)
in component r. Similarly an entry bjr of matrix B indicates a measure of how much cell j is
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acting as a target in component r. On the other hand, matrix C shows the temporal activity of
a given component. For instance, entry ctr indicates how active the component r is at time t.
Therefore, the outer product of the vectors ar ◦ br ◦ cr represents a spatio-temporal sub-pattern
in the data. The superposition of all these sub-patterns approximates the original population
movement data. For each set of A,B,C matrices that represent movement patterns for a single
day, we assign the associated day-of-week label. We then design a classifier that learns patterns
from data and classifies new data into different day-of-week groups. We tested various classifier
models and found that Random Forest classifier performed best.

3 Case Study

3.1 Data and Study Sites

A case study was performed using six-month passenger trajectory data (Nov. 2012 - Apr.
2013) obtained from smart card data provided by TransLink, the transit agency in Brisbane
and six-month Bluetooth trajectory data (July 2015 - Dec. 2015) provided by Department
of Transport and Main Roads, the Queensland state government, Australia. The data covers
Brisbane metropolitan area as shown in Fig. 2.

3.2 Results

To show what the output of tensor decomposition looks like, the data for one Monday and one
Sunday are shown. As can be seen in Fig. 3 and Fig. 4 there are visible differences in population
movement on different days. This is particularly evident in the temporal activity patterns.

To understand to what extent the ensemble spatio-temporal patterns help characterize dif-
ferent days, we trained a Random Forest classifier based on different types of clusters. To design
the classifier, one-third of the data was put aside for test and the remaining two-thirds were
used to train and cross validate. For passenger trajectory data, we found that the classification
gave good results with four clusters namely, Sunday, Mid-Week (Monday, Tuesday, Wednesday,
Thursday), Friday and Saturday. Using a Random Forest classifier with 200 trees, we achieved
90% accuracy on cross-validation and 93.8% on test set. The confusion matrix for classifier is
shown in Fig. 7 The higher accuracy on test set may be an indicator that more samples are
needed for the test set. Nevertheless, it is shown that given a daily traffic pattern, it is possible
to distinguish the type of traffic pattern using ensemble spatio-temporal patterns. For Bluetooth
trajectory data, however, the day-of-week patterns were less distinguishable than passenger tra-
jectories. With a Random Forest classifier with 200 trees, the results showed that at best it is
possible to distinguish Saturday, Sunday and weekday movement patterns. For this case, the
classifier achieved 97.3% accuracy on cross-validation set and an accuracy of 94% on test set, as
shown in Fig. 8
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Fig. 3: Public transport spatio-temporal patterns on a Sunday. Each row shows one spatio-
temporal component. Left, the source-target pattern. Right, the corresponding temporal
activity pattern.

Fig. 4: Public transport spatio-temporal patterns on a Monday. Each row shows one spatio-
temporal component. Left, the source-target pattern. Right, the corresponding temporal
activity pattern.
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Fig. 5: Road traffic spatio-temporal patterns on a Monday. Each row shows one spatio-temporal
component. Left, the source-target pattern. Right, the corresponding temporal activity
pattern.

Fig. 6: Road traffic spatio-temporal patterns on a Monday. Each row shows one spatio-temporal
component. Left, the source-target pattern. Right, the corresponding temporal activity
pattern.
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Fig. 7: Confusion matrix associated with Random Forest classifier trained with public transport
data

Fig. 8: Confusion matrix associated with Random Forest classifier trained with road traffic trans-
port data

4 Conclusion and Future Work

In this work, we demonstrated how non-negative tensor decomposition can be used to mine
spatio-temporal patterns within a dynamic graph representation of population movement. Ten-
sor decomposition of dynamic graphs provides patterns that can be easily interpreted as spatial
and temporal features underlying the aggregated population movement. Additionally, tensor
decomposition was shown to be very effective in achieving dimensionality reduction. We showed
that using an ensemble of spatio-temporal patterns, it is possible to train classifiers that can
distinguish different types of movement pattern.
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In the bigger picture, this work demonstrated how machine learning can be applied to dy-
namic graphs. This is particularly important given the representational power of graphs. In
the context of intelligent transport systems, the ability to apply machine learning techniques to
dynamic graphs opens the possibility to achieve anomaly detection, incident management and
data-driven transport planning.

The ability to go from a large amount of trajectory data spread across the city to visual
and mathematical patterns is a significant step towards modelling of population movement
in a manner that both spatial and temporal information is maintained. In the context of
intelligent transport system, this allows the operators to understand where and when demands
arise, understand population response to incidents and plan infrastructure developments and
maintenance.
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1 Introduction

Integrated Network Management (INM) entails the coordinated deployment of traffic manage-
ment measures (traffic control, ramp metering, VMS, in-car systems) for the sake of improving
the effectiveness of local traffic control and management measures. Recent pilots in The Nether-
lands have shown the potential of INM, but also have highlighted that for successful deployment,
the following issues need to be resolved [Hoogendoorn et al. (2016)]:

1. Since the coordination concept is based on buffering traffic on other on-ramps and con-
troller intersections than the active bottleneck, knowledge on the relation between the
buffers and the active bottleneck is essential. This relation (the fraction of traffic in the
buffer traveling to the bottleneck) can generally not be determined from loop detector
information.

2. To determine the amount of bufferspace still left, and to determine if queues on off-ramps,
on-ramps, and urban arterials are active bottlenecks, insight into the actual queue lengths
is necessary. With the current loop lay out, it turned out impossible to determine a generic
queue estimation technique based on loops only.

3. The INM approach depends on the timely and reliable identification of bottlenecks. Al-
though the current algorithm using the inductive loops functions satisfactory, it remains
to be seen if the use of additional or alternative data sources would improve the timely
bottleneck identification.

For all of these issues, Floating Car Data (FCD) holds the promise of improving traffic mon-
itoring and diagnostics for INM purposes. For the first point, FCD stemming from navigation
devices or apps could provide the relevant information to determine the buffer effectiveness. For
the third point, fusion of FCD and loop data using adequate filtering techniques has shown the
potential to get more accurate state estimates when using data sources with different semantic
features (e.g. [Van Lint et al. (2010)]).

This extended abstract focusses on the second issue, queue estimation, which turns out to be
a difficult problem to tackle due to a number of reasons most of which related to measurement
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error. None of the methods proposed in literature and tested during the INM pilot provided
satisfactory and generic results.

The main research objective is to use the added value of floating car data in increasing the ac-
curacy and reliability of queue estimates, where we will only consider current of-the-shelf FCD
products (in this case from the company TomTom) that will be described in more detail in the
remainder of the abstract. This in contrast to many other studies (e.g. [Kuwahara et al. (2013)]),
that use vehicle trajectory data that often are collected for the sake of the study, but not being
broadly available . To this end, we will develop three different queue estimation approaches to
fuse the FCD with loop data. We will show that the data driven approach provides the most
accurate estimates.

2 Data

Fig. 1 shows part of the data used for the analyses presented in this paper for one day (16th of
June 2016) of the considered two month period (June - July 2016). On the far left side of the
picture, the network link considered is shown, indicating the two lanes of the link that fork into
five lanes (two left turning lanes, two through going lanes, one right turning lane). The graph
shows the radar data that is used as ground truth. These data are based on individual vehicle
trajectories that are used to determine the 10-second average speeds for 7 meter cells, shown by
the speed contour plot. Note that an overview of the entire day is shown in the bottom of the
picture (radar data), clearly showing the queue dynamics of this particular situation.

On top of the contour plot, we have plotted the (virtual) trajectories that are based on the
FCD. These data provide 30-second average speeds for the link shown, dynamically sectioned
into sublinks. Without going into detail, this sectioning provides more detailed information on
the traffic conditions and speed heterogeneity on the link, given that sufficient FCD traces are
available and there is a clear difference in traffic conditions for the different dynamic sections.
Note that the circles show the locations where the sections begin and end. The FCD penetration
is about 1-3%. Due to the way the raw data is processed, the FCD has a delay of 3 to 5 minutes.

Next to the floating car data, different (types of) loops are present at the considered site.
These loops are located at the cross-sections at 259 meter, 37 meter, and 21 meter (next to the
stop line) and provide occupancy and flow information (per lane). Note that the loop at 37 meter
is a long loop.

In the remainder of the abstract, we focus on estimating the queue length on the link. This
length is defined by the tail of the queue, where the queue is defined by using a speed thresh-
old of 10 km/h. Note that other sensible definitions of the queue length exist, and that this
choice is to an extent arbitrary, and in this case based on the application to INM as described in
[Hoogendoorn et al. (2016)].

3 Methods

We have developed three queue estimation methods to integrate the FCD with the loop data. The
first method is based on traffic flow theory, while the second and third method are data-driven
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Figure 1: Screenshot of data analysis tool.

3



time

sp
ac

e

loops

upstream
loopst0tFCD

age
last FCD
message

delay
FCD dFCD

Travel time
FCD-trajectory L/𝛾FCD

D
is

ta
nc

e 
be

tw
ee

n 
lo

op
s L Outflow Nout

Inflow Nin

Trajectory

Figure 2: Schematic explanation of the data fusion queue estimator.

approaches based on simple machine learning approaches.

3.1 Traffic flow theory data fusion queue estimator

Fig. 2 graphically explains the traffic flow theory based method. The method uses the most
recent (reliable) FCD to construct a vehicle trajectory. By determining the inflow and outflow
since that vehicle has passed, we determine the number of vehicles in the link. The example
in the figure shows how the number of vehicles in the link equals the difference between the
cumulative inflow Nin = 16 and the cumulative outflow Nout = 11, meaning that there are 5
vehicles on the link. The flows are determined from the inductive loop at the entry and the exit,
which poses the problem of measurement error. In fact, during the development of the method
it turned out that these measurements are not reliable, in particular when traffic becomes denser.
Therefore, we have used the occupancy rates to determine the flows indirectly.

3.2 Data-driven approach using radar as training data

The second approach uses what we refer to as grey box modelling, which means that we use a
statistical model to correlate the input (FCD, loop data) and the output (queue lengths) that has
features relevant for the process we aim to model. In this case, the objective to model queue
lengths implies that we need a model that features forms of integration due to the conservative
nature of the process. Therefore, we have used an autoregressive model relating the queue
length r(t) to the estimates from previous periods r(t−1),r(t−2), ..., the loop data input (flows,
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Figure 3: Visualisation of the data driven approaches (method 2 and 3).

occupancies) u1(t − j−n1) and the FCD input u2(t − j−n2) for j = 0,1, ... as follows:

r(t) = a1r(t −1)+a2r(t −2)+a3r(t −3)+ ... (1)

+b1
0u1(t −n1)+b1

1u1(t −n1 −1)+b1
3u1(t −n1 −2)+ ... (2)

+b2
0u2(t −n2)+b2

1u2(t −n2 −1)+b2
3u2(t −n2 −2)+ ...+ ε(t) (3)

Estimation of the parameters of the model can be done using standard least-squares approaches,
which will not be described in this abstract. Fig 3a shows a graphical representation of the
modelling and estimation approach. Note that we assume that ground truth queue estimates
are available for training (and validation) purposes. For the present case, the ground truth is
available from the radar detectors. In the remainder we will use part of the data (10 days to be
precise) for training of the model; the remainder of the data is used for validation purposes.

The approach allows to determine which of the input is most important to determine queues
accurately. This can be achieved by specifying different model designs using specific model
input (e.g. all available data, only loop data, only FCD, specific loops, etc.) to estimate the
queue lengths.

Note that we will assume that the FCD are actual, i.e. the 3-5 minute delivery delay is not
taking into account. Although this hampers the practical application of the method (i.e. queue
estimates are in fact 3-5 minutes old, which for applications in urban traffic control is possibly
too long), it will reveal what we can potentially do with the FCD.
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3.3 Data-driven approach using FCD as training data

The final method developed is also based on the modelling approach described in the previous
section. However, in this case we do not use the radar data for training purposes, but instead we
use the FCD. Fig. 3b outlines the approach. The general idea behind the approach is that the
autoregressive model would find that best parameters to relate the input (from the loops) to the
erroneous output (the FCD). This to an extent resolves the problem that the FCD can be at times
inaccurate due to the few number of vehicles on which the data is based at a specific moment in
time.

A major benefit of this method compared to the previously described method is that it does
not require radar data for training purposes. This makes the method more generically applicable.
Furthermore, the FCD delivery delay of 3-5 minutes issue is resolved as well, since the FCD is
used only for training.

4 Results and discussion

To assess the results, we consider different error measures reflecting both the accuracy and the
reliability of the estimator. For the accuracy, we have consider the Mean Absolute Error (MAE)
and the Root Mean Squared Error (RMSE). For the reliability, we consider the probability P(p)
of the estimate to be p% larger than then ground truth (for each 30 seconds), with p = 10,25
and 50%.

Tab. 1 shows a selection of the results of the study. From the table, we can conclude that
method 2 using all available data outperforms the other methods both in terms of accuracy and
reliability. The performance of the method reduces when only FCD is available. In this case
however, the performance is only slightly worse than the performance of method 1. In fact, very
large outliers (error larger than 50%) actually occur less frequent (see value of P(50)), although
further studies would need to provide further evidence that this is indeed a general feature.

In particular the results of method 3 are interesting: the use of FCD as a means to train
the autoregressive model seems to result in an estimator that performs comparable to the other
methods.

Method Description MAE RMSE P(10) P(25) P(50)

Method 1 Using occupancy during green 19.46 34.89 52.8% 21.6% 8.1%
Method 2 All data 15.53 24.93 49.9% 17.3% 5.1%
Method 2 Only FCD 19.79 30.66 58.8% 23.7% 6.5%
Method 3 FCD as training 18.96 32.67 61.0% 21.6% 7.5%

Table 1: Overview of queue estimator methods performances. For method 2, the performance
pertains to the validation set only.

Although providing a detailed account of the implications of these results for INM pur-
poses is beyond the scope of this abstract, we can conclude that the methods proposed seem
to provide more accurate and reliable queue estimates than the previously used loop-based ap-
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proaches [Hoogendoorn et al. (2016)]. In fact, we - somewhat hesitantly - conclude that the
performance is adequate for current INM applications (in particular buffering), given that we
explicitly consider the unreliability of the estimates in the INM design. That is, understanding
that we underestimate the queue with say 10% in 20% of the cases allows us to determine the
required margins in the buffer lengths.

Looking at the specific methods, we can conclude that each of the approaches has if pros
and cons. Method 1 has the benefit that no training (and hence no training data) is necessary.
Its downside lies in the configuration of the system and the tuning to gather for the specific
characteristics of the considered location. Method 2 has the benefit that it outperforms the other
methods. Furthermore, it does not require complex configuration of the model. However, it does
require the dedicated collection of ground truth data which may be costly and cumbersome for
large scale field applications.

Method 3 underperforms compared to the other methods, although the differences are rela-
tively small. Next to limited configuration effort, no dedicated data collection is needed. In fact,
we could cater for auto tuning of the model (e.g. each moment new FCD becomes available)
making the approach adaptive to for instance changes location conditions (e.g. in case of an
incident blocking a lane on the arterial).

Further research will be geared towards investigating the relation between the quality of the
queue estimates and the effectiveness of the INM approach, but at first glance, all methods seem
promising angles for developing a robust queue estimation module. Next to this, investigating
the impact of the FCD quality (related to the penetration rate) is of importance to understand
when loop data are no longer required for accurate queue estimation. Furthermore, we could
consider the use of the raw FCD trajectory data as a data source to further improve the queue
estimates. However, since this is currently not an ’of the shelf’ product, it needs to be seen if the
improvement in queue estimation quality would outweigh the investment cost.
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